
 

  

UNIT I  
 

MOS TRANSISTOR THEORY 
 
 
Basic MOSFET Structure 

 
The cross-sectional and top/bottom view of MOSFET are as in figures 1 and 2 given 
below : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
fig 1 Cross-sectional view of MOSFET                 fig 2 Top/Bottom View of MOSFET An n- 

MOSFET 

It consists of a source and a drain, two highly conducting n-type semiconductor regions which 

are separated from the p-type substrate by reverse-biased p-n diodes. A metal or poly crystalline 

gate covers the region between the source and drain, but is isolated from the semiconductor by 

the gate oxide. 

Types of MOSFET 
 
 
MOSFETs are divided into two types viz. p-MOSFET and n-MOSFET depending upon its 
type of source and drain. 

 
 
 
 
 
 
 
 
 
 
 
 
p-MOSFET                           n-MOSFET                                             c-MOSFET 

 
 
The combination of a n-MOSFET and a p-MOSFET is called cMOSFET which is the 
mostly used as MOSFET transistor. We will look at it in more detail later. 



 

  

 
 

 

    

 
 

  
 

MOSFET I-V Modelling 
 
 
We are interested in finding the outputcharacteristics ( ) and the transfer charcteristics 
of the MOSFET. In other words, we can find out both if we can formulate a 
mathematical equation of the form: 

 
 

 

We can say that voltage level specifications and the material parameters cannot be altered by 
designers. So the only tools in the designer's hands with which he/she can improve the 
performance of the device are its dimensions, W and L In fact, the most important parameter 
in the device simulations is ratio of W and L. 

 
The equations governing the output and transfer characteristics of an n-MOSFET and 
p-MOSFET are : 

 
 
 

 
p-MOSFET: 

 
 
 
 
 
 

 
n-MOSFET: 

Linear 
Saturation 
 
 
 
 
 
Linear 
Saturation 

 
 
 
The output characteristics plotted for few fixed values of for p-MOSFET and n-MOSFET 
are shown next : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p-MOSFET                                         n-MOSFET 



The transfer characteristics of both p-MOSFET and n-MOSFET 
are plotted for a fixed value of as shown next : 

 
 
 
 
 
 
 
 
 
 
 
 
 

p-MOSFET                                                  n-MOSFET 
 

 
 
 
 
 
 

Modes of operation 
Depending upon the value of gate voltage applied, the MOS capacitor works 
in three modes : 
 

 
Accumulation mode (grey layer - strong hole concentration) 

 
 

 
 

 
Depletion Mode (light grey layer – depletion region) 

 
 
 

1. Accumulation: In this mode, there is accumulation of holes (assuming 
n-MOSFET) at the Si-SiO2 interface. All the field lines emanating 
from the gate terminate on this layer giving an effective dielectric 
thickness as the oxide thickness. In this mode, Vg <0 

 
 

2. Depletion: As we move from negative to positive gate voltages the 



  

 

 

 

holes at the 
interface are repelled and pushed back into the bulk leaving a 
depleted layer. This layer counters the positive charge on the gate 
and keeps increasing till the gate voltage is below 
threshold voltage. we see a larger effective dielectric length and hence 
a lower capacitance. 

3. Strong Inversion:When Vg crosses threshold voltage, the 
increase in depletion region width stops and charge on layer is 
countered by mobile electrons at Si-SiO2 interface. This is called 
inversion because the mobile charges are opposite to the type of 
charges found in substrate. In this case the inversion layer is formed 
by the electrons. Field lines hence terminate on this layer thereby 
reducing the effective dielectric thickness 

 
 
 
 
 
 
 
 
 
 
 

Strong Inversion mode 
(grey layer - strongelectron concentration, light grey - depletion region) 

 
 
 

Threshold voltage 
 

 
It is that gate voltage at which the surface band bending is twice     , 
Where 

 
 

We know that the depth of depletion region for         is between 0 and           
and is given by, 

 
 
 

 
 
 
 
 

Charge in depletion region at                 is given by                             where 
 
 
 

 
 
 
 

Beyond threshold, the total charge QD  in the seminconductor has to 
balance the charge on gate electrode, Qs  i.e.                             where we 

define the charge in the inversion layer as 
a quantity which needs to be determined. 



 

     

 
 

 
This leads to following expression for gate voltage- 

 
 

 
 
 

In case of depletion, there in no inversion layer charge, so Qi 
=0, i.e. gate voltage becomes 

 
 
 

 
 
 
 

but in case of inversion, the gate 
voltage will be given by : 
The second term in second equality of last expression states our basic 
assumption, namely that any change in gate voltage beyond the threshold 
requires a change in inversion layer charge. Also from the same 
expression, we obtain threshold voltage as : 

 
 
 

 
 

MOS Fabrication: 
 
 
 
Step1: 
Processing is carried on single crystal silicon of high purity on which 
required P impurities are 
introduced as crystal is grown. Such wafers are about 75 to 150 mm in 
diameter and 0.4 mm thick and they are doped with say boron to impurity 
concentration of 10 to power 15/cm3 to 10 to the power 16 /cm3. 

 
 
Step 2 : 
A layer of silicon di oxide (SiO2) typically 1 micrometer  thick is grown all 
over the surface of 
the wafer to protect the surface, acts as a barrier to the dopant during 
processing, and provide a generally insulating substrate  on to which 
other layers may be deposited and patterned. 

 
 



 
Step 3: 
The surface is now covered with the photo resist which is deposited onto the 
wafer and spun to an 
even distribution of the required thickness. 

 
 
 
Step 4: 
The photo resist layer is then exposed to ultraviolet light through masking 
which defines those 
regions into which diffusion is to take place together with transistor 
channels. Assume, for example , that those areas exposed to uv radiations 
are polymerized (hardened), but that the areas 
required for diffusion are shielded by the mask and remain unaffected. 

 
 

 
Step 5: 
These areas are subsequently readily etched away together with the 
underlying silicon di oxide so 
that the wafer surface is exposed in the window defined by the mask. 

 
 
Step 6: 
The remaining photo resist is removed and a thin layer of SiO2 (0.1 micro m 
typical) is grown 
over the entire chip surface and then poly silicon is deposited on the top of 
this to form the gate structure. The polysilicon layer consists of heavily 
doped polysilicon deposited by chemical 
vapour deposition (CVD). In the fabrication of fine pattern devices, precise 
control of thickness, impurity concentration, and resistivity is necessary 



 
 
 
Step 7: 
Further photo resist coating and masking allows the poly silicon to be 
patterned and then the thin 
oxide is removed to expose areas into which n-type impurities are to be 
diffused to form the source and drain. Diffusion is achieved by heating the 
wafer to a high temperature and passing a gas containing the desired n-type 
impurity. 
Note: The poly silicon with underlying thin oxide and the thick oxide acts as 
mask during 
diffusion the process is self aligning. 

 
Step 8: 
Thick oxide  (SiO2) is grown over all again and is then masked with 
photo resist and etched to expose selected areas of the poly silicon gate 
and the drain and source areas where connections are to be made. 
(contacts cut) 
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: 
The whole chip then has metal (aluminium) deposited over its surface to a 
thickness typically of 1 
micro m. This metal layer is then masked and etched to form the required 
interconnection pattern. 

 
 

CMOS Fabrication: 
 

CMOS fabrication can be accomplished using either of 
the three technologies: 

•   N-well/P-well technologies 
•   Twin well technology 
•   Silicon On Insulator (SOI) 

 
 
 

Twin Well Technology 
 

Using  twin  well  technology,  we  can  optimise  NMOS  and  PMOS  
transistors  separately. This means that transistor parameters such as 
threshold voltage, body effect and the channel transconductance of both 
types of transistors can be tuned independenly. 

 
n+  or  p+  substrate,  with   a  lightly  doped  epitaxial   layer  on  top,  
forms  the  starting material  for  this  technology.  The  n-well  and  pwell  
are  formed  on  this  epitaxial  layer which forms the actual  substrate. 
The dopant concentrations can be carefully optimized to produce the 
desired device characterisitcs because two independent doping steps are 
performed to create the well regions. 

 
The conventional n-well  CMOS process suffers from, among other 
effects, the problem of unbalanced drain parasitics since the doping 
density of the well region typically being about one order of magnitude 
higher than the substrate. This problem is absent in the twin-tub process. 

 
 
 

Silicon on Insulator (SOI) 
 

To  improve  process  characteristics such  as  speed  and latch-up  
susceptibility, technologists have  sought  to  use  an  insulating  substrate  
instead  of  silicon  as  the substrate material. 
 



Completely isolated NMOS and PMOS transistors can be created virtually 
side by side on an insulating substrate (eg. sapphire) by using the SOI 
CMOS technology. 

 
 
This technology offers advantages in the form of higher integration density 
(because of the absence of well regions), complete avoidance of the latch-up 
problem, and lower parasitic capacitances compared to the conventional n-
well or twin-tub CMOS processes. 

 
But this technology comes with the disadvantage of higher cost than the 
standard n-well CMOS process. Yet the improvements of device 
performance and the absence of latch- up problems can justify its use, 
especially in deep submicron devices. 

 
 
 
 
In this discussion we will concentrate on the well established n-well CMOS 
fabrication technology, which requires that both nchannel and p-channel 
transistors be built on the same chip  substrate. To  accomodate  this, 
special  regions  are  created with  a semiconductor type opposite to the 
substrate type. The regions thus formed are called wells or tubs. In an n-type 
substrate, we can create a p-well or alternatively, an n-well is created  in  
a  p-type  substrate. We   present   here   a  simple   n-well   CMOS   
fabrication technology, in which the NMOS transistor is created in the p-
type substrate, and the PMOS in the n-well, which is built-in into the p-
type substrate. 

 
Historically, fabrication started with p-well technology but now it has 
been completely shifted to n-well technology. The main reason for this is 
that, "n-well sheet resistance can be made lower than p-well sheet 
resistance" (electrons are more mobile than holes). 

 
The simplified process sequence (shown in Figure 12.41) for the 
fabrication of CMOS 
integrated circuits on a p-type silicon 
substrate is as follows: 

 
 

• N-well regions are created for PMOS transistors, by impurity 
implantation into the substrate. 

•   This is followed by the growth of a thick oxide in the regions 
surround the NMOS 

and PMOS active regions. 
• The  thin  gate  oxide  is  subsequently  grown  on  the  

surface  through  thermal oxidation. 
•   After  this  n+  and  p+  regions  (source,  drain  and  channel-stop  
implants)  are 

created. 



•  The metallization step (creation of metal interconnects) forms the final 
step in this 

process. 

 
Simplified Process Sequence For Fabrication Of CMOS ICs 

 
The integrated circuit may be viewed as a set of patterned layers of doped 
silicon, polysilicon, metal and insulating silicon dioxide, since each 
processing step requires that certain areas are defined on chip by appropriate 
masks. A layer is patterned before the next layer of material is applied on 
the chip. A process, called lithography, is used to transfer a pattern to a 
layer. This must be repeated for every layer, using a different mask, since 
each layer has its own distinct requirements. 

 
We illustrate the fabrication steps involved in patterning silicon dioxide 
through optical lithography, which shows the lithographic sequences. 



 



 
 

Process steps required for patterning of silicon dioxide 
 
First an oxide layer is created on the substrate with thermal oxidation of the silicon surface. 
This oxide surface is then covered with a layer of photoresist. Photoresist is a light-sensitive, 
acid-resistant  organic  polymer  which  is  initially  insoluble  in  the developing solution. On 
exposure to ultraviolet (UV) light, the exposed areas become soluble which can be etched away 
by etching solvents. Some areas on the surface are covered with a mask during exposure to 
selectively expose the photoresist. On exposure to UV light, the masked areas are shielded 
whereas those areas which are not shielded become soluble. 

 
There are two types of photoresists, positive and negative photoresist. Positive photoresist is 
initially  insoluble,  but  becomes  soluble  after  exposure  to  UV  light,  where  as  negative 
photoresist is initially soluble but becomes insoluble (hardened) after exposure  to  UV  light. 
The  process  sequence  described  uses  positive  photoresist. 



Negative photoresists are more sensitive to light, but their photolithographic resolution is  not 
as  high  as  that  of  the  positive  photoresists.  Hence,  the  use  of  negative photoresists is less 
common in manufacturing high-density integrated circuits. 

 
The unexposed portions of the photoresist can be removed by a solvent after the UV exposure 
step. The silicon dioxide regions not covered by the hardened photoresist is etched away by 
using a chemical solvent (HF acid) or dry etch (plasma etch) process. On completion of this 
step, we are left with an oxide window which reaches down to the silicon surface. Another 
solvent is used to strip away the remaining photoresist from the silicon dioxide surface. The 
patterned silicon dioxide feature is shown in Figure 12.43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The result of single photolithographic patterning 
sequence on silicon dioxide 

 
The sequence of process steps illustrated in detail actually accomplishes a single pattern transfer 
onto the silicon dioxide surface. The fabrication of semiconductor devices requires several such 
pattern  transfers  to  be  performed  on  silicon  dioxide,  polysilicon,  and  metal.  The  basic 
patterning process used in all fabrication steps, however, is quite similar to the one described 
earlier. Also note that for accurate generation of high- density patterns required in submicron 
devices, electron beam (E-beam) lithography is used instead of optical lithography. 

 
In this section, we will examine the main processing steps involved in fabrication of an n- 
channel MOS transistor on a p-type silicon substrate. 



The  first  step  of  the  process  is  the  oxidation  of  the  silicon  
substrate  which  creates  a relatively thick silicon dioxide layer on the 
surface. This oxide layer is called field oxide  The field oxide is then 
selectively etched to expose the silicon surface on which the transistor 
will be created. After this the surface is covered with a thin, high-quality 
oxide layer. This oxide layer will form the gate oxide of the MOS 
transistor Then a polysilicon layer is deposited on the thin oxide   
Polysilicon is used as both a gate electrode material for MOS transistors 
as well as an interconnect medium in silicon integrated circuits. The 
resistivity of  polysilicon, which is usually high, is reduced by doping it 
with impurity atoms. 

 
Deposition is followed by patterning and etching of polysilicon layer to 
form the interconnects and the MOS transistor gates The thin gate oxide not 
masked by polysilicon is also etched away exposing the bare silicon surface. 
The drain and source junctions are to be formed  Diffusion or ion 
implantation is used  to  dope  the  entire  silicon  surface  with  a  high  
concentration  of impurities (in this case donor atoms to produce n-type 
doping). Two n-type regions (source and drain junctions) in the p-type 
substrate as doping penetrates the exposed areas of the silicon surface. The 
penetration of impurity doping into the polysilicon reduces its resistivity. 
The polysilicon gate is patterned before the doping and it precisely 
defines  the  location  of  the channel region and hence, the location of 
the source and drain regions. Hence this process is called a self-aligning 
process. 

 
The entire surface is again covered with an insulating layer of silicon 
dioxide after the source and drain regions are completed  Next contact 
windows for the source and drain are patterned into the oxide layer . 
Interconnects are formed by evaporating aluminium on the surface which 
is followed by patterning and etching of the metal layer   A second or 
third layer of metallic interconnect can also be added after adding another 
oxide layer, cutting (via) holes, depositing and patterning the metal. 



 



 



 
Process flow for the fabrication of an n-type MOSFET on p-type silicon 

 
We   now   return   to  the  generalized  fabrication  sequence  of  n-well   CMOS  integrated 
circuits. The following figures illustrate some of the important process steps of the fabrication 
of a CMOS inverter by a top view of the lithographic masks and a cross- sectional view of the 
relevant areas. 

 

 
The  n-well  CMOS  process  starts  with  a  moderately  doped  (with  impurity  concentration 
typically less than 1015 cm-3) p-type silicon substrate. Then, an initial oxide layer is grown on 
the entire surface. The first lithographic mask defines the n-well region. Donor atoms, usually 
phosphorus, are implanted through this window in the oxide. Once the n- well is created, the 
active areas of the nMOS and pMOS transistors can be defined 



 
 
The creation of the n-well region is followed by the growth of a thick field oxide in the areas 
surrounding  the  transistor  active  regions,  and  a  thin  gate  oxide  on  top  of  the active 
regions. The two most important critical fabrication parameters are the thickness and quality of 
the gate oxide. These strongly affect the operational characteristics of the MOS transistor, as 
well as its long-term stability. 

 

 
Chemical vapor deposition (CVD) is used for deposition of polysilicon layer and patterned by 
dry (plasma) etching. The resulting polysilicon lines function as the gate electrodes of 



the nMOS and the pMOS transistors and their interconnects. The polysilicon gates also act as 
self-aligned masks for source and drain implantations. 

 
The n+ and p+ regions are implanted into the substrate and into the n-well using a set of two 
masks. Ohmic contacts to the substrate and to the n-well are also implanted in this process 
step. 

 

 
 
CVD is again used to deposit and insulating silicon dioxide layer over the entire wafer. After 
this  the  contacts  are  defined  and  etched  away  exposing  the  silicon  or  polysilicon contact 
windows. These contact windows are essential to complete the circuit interconnections using 
the metal layer, which is patterned in the next step. 



Metal (aluminum) is deposited over the entire chip surface using metal evaporation, and 
the metal lines are patterned through etching. Since the wafer surface is non-planar, the 
quality and the integrity of the metal lines created in this step are very critical and are 
ultimately essential for circuit reliability. 

 
The composite layout and the resulting cross-sectional view of the chip, showing one 
nMOS and one pMOS transistor (built-in nwell), the polysilicon and metal interconnections. 
The final step is to deposit the passivation layer (for protection) over the chip, except for 
wire-bonding pad areas. 

 
This completes the fabrication of the CMOS inverter using n-well 
technology. 

 

 

                                                                  
 
 



 

  

 
 

 

    

 
 

  
 

 
                                                                 UNIT II 

 
 

MOS CIRCUITS AND DESIGN 
 
 
MOSFET I-V Modelling 

 
 
We are interested in finding the outputcharacteristics ( ) and the transfer charcteristics 
of the MOSFET. In other words, we can find out both if we can formulate a 
mathematical equation of the form: 

 
 

 

We can say that voltage level specifications and the material parameters cannot be altered by 
designers. So the only tools in the designer's hands with which he/she can improve the 
performance of the device are its dimensions, W and L In fact, the most important parameter 
in the device simulations is ratio of W and L. 

 
The equations governing the output and transfer characteristics of an n-MOSFET and 
p-MOSFET are : 

 
 
 

 
p-MOSFET: 

 
 
 
 
 
 

 
n-MOSFET: 

Linear 
Saturation 
 
 
 
 
 
Linear 
Saturation 

 
 
 
The output characteristics plotted for few fixed values of for p-MOSFET and n-MOSFET 
are shown next : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p-MOSFET                                         n-MOSFET 



The transfer characteristics of both p-MOSFET and n-MOSFET are plotted for a fixed 
value of as shown next : 

 
 
 
 
 
 
 
 
 
 
 
 
 

p-MOSFET                                                  n-MOSFET 
 

 
C-V Characteristics of a MOS Capacitor 

 
As we have seen earlier, there is an oxide layer below Gate terminal. Since oxide is a very good 
insulator, it contributes to an oxide capacitance in the circuit. Normally, the capacitance value of 
a capacitor doesn't change with values of voltage applied across its terminals. However, this is 
not the case with MOS capacitor. We find that the capacitance of MOS capacitor changes its 
value with the variation in Gate voltage. This is because application of gate voltage results in the 
band bending of silicon substrate and hence variation in charge concentration at Si-SiO2 
interface. Also we can see  that the curve splits into two (reason will be explained later), after a 
certain voltage, depending upon the frequency (high or low) of AC voltage applied at the gate. 
This voltage is called the threshold voltage(Vth) of MOS capacitor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cross section view of MOS Capacitor                   plot of MOS Capacitor 
 
 
 
 
 

DC Characteristics of CMOS: 
 

Let Vtn and Vtp denote the threshold voltages of the n and p-devices respectively. The following 
voltages at the gate and the drain of the two devices (relative to their respective sources) are all 
referred with respect to the ground (or VSS), which is the substrate voltage of the n -device, namely 

 
Vgsn =Vin , Vdsn =Vout, Vgsp =Vin -VDD , and Vdsp=Vout -VDD . 

 
The voltage transfer characteristic of the CMOS inverter is now derived with reference to the 



  
  

  

following five regions of operation : 
 
Region 1 : the input voltage is in the range               . In this condition, the n -transistor is off, 
while the p -transistor is in linear region (as                                  ). 

 

No actual current flows until Vin crosses Vtn , as may be seen from Figure 2.11. The operating 
point of the p -transistor moves from higher to lower values of currents in linear zone. 

 
Region 2 : the input voltage is in the range                  . The upper limit of Vin is Vinv , the logic 
threshold voltage of the inverter. The logic threshold voltage or the switching point voltage of an 
inverter denotes the boundary of "logic 1" and "logic 0". It is the output voltage at 
which Vin = Vout . In this region, the n-transistor moves into saturation, while the p-transistor 
remains in linear region. The total current through the inverter increases, and the output voltage 
tends to drop fast. 

 
 
 
 
Region 3 : In this region,            . Both the transistors are in saturation, the drain current attains a 
maximum value, and the output voltage falls rapidly. The inverter exhibits gain. But this region is 



    

      

    

  
 

 

   

    

     

inherently unstable. As both the transistors are in saturation, equating their 
currents, one gets 

 

(as                                      ). 
 

 
 

 
 

 
 

 

where               and                  . Solving for the logic threshold voltage Vinv , 
one gets 

 

 
 
 
 

 
 

.

 Note that if             and               , then Vinv 

=0.5 VDD 

 
Region 4 : In this region,                              . As the input voltage Vin is 
increased beyond Vinv , 
the n -transistor leaves saturation region and enters linear region, while the p -
transistor continues 
in saturation. The magnitude of both the drain current and the output voltage 
drops. 

 
 
Region 5 : In this region,                               . At this point, the p -transistor 
is turned off, and the n -transistor is in linear region, drawing a small 
current, which falls to zero as Vin increases beyond VDD -| Vtp|, since the p -
transistor turns off the current path. The output in this region 
is           . 
 
BODY EFFECT: 

 
 

Transistor is a 4-terminal device. Gate, drain and source are 
the 3 terminals that are used to control the transistor, but the bulk or body, 
if not properly biased, may put the transistor inoperable. The pn junctions 
defined by source-bulk and drain-bulk, which are basically two diodes, 
must be reverse-biased to stop them from leaking current from the 
source/drain to the substrate. That means that the source potential must 
always be equal or greater than the bulk potential. Since drain voltage is 
always greater or equal than source voltage, we don't even consider the drain-



 

 

bulk junction. 
 

 
 

When VS>VB, the depletion width of the pn junction increases  That makes 
it more difficult to create a channel with the same VGS, effectively reducing 
the channel depth. In order to return to the same channel depth, VGS needs 
to increase accordingly.The body effect can be seen as a change in 
threshold voltage 
 
Channel 
Length 
modulation
. 

 
 

This in MOSFET is caused by the increase in depletion layer width at the 
drain as the drain voltage is increased. This leads to a shorter channel 
length (reduced by        )  and  increased drain current. When the channel 
length of MOSFET is decreased and MOSFET is operated beyond channel 
pinch-off, the relative importance of pinchoff  length            with  respect  to 
physical  length is increased.  

 
 
Types of Design Rules 
 
The design rules primary address two issues: 
1. The  geometrical  reproduction  of  features  that  can  be  reproduced  by  
the maskmaking and lithographical process ,and 
2. The interaction between different layers. 
 
There are primarily two approaches in describing the design rules. 
1. Linear scaling is possible only over a limited range of dimensions. 



2. Scalable design rules are conservative .This results in over dimensioned and 
less dense design. 
3. This rule is not used in real life. 
 
1. Scalable Design Rules (e.g. SCMOS, λ-based design rules): 
In this approach, all rules are defined in terms of a single parameter λ. The 
rules are so chosen that a design can be easily ported over a cross section of 
industrial process  ,making  the  layout  portable  .Scaling  can  be  easily  done  
by  simply changing the value of. 
The key disadvantages of this approach are: 
 
2. Absolute Design Rules (e.g. μ-based design rules ) : 
In this approach, the design rules are expressed in absolute dimensions (e.g. 
0.75μm) and therefore can exploit the features of a given process to a 
maximum degree. Here, scaling and porting is more demanding, and has to be 
performed either manually or using CAD tools .Also, these rules tend to be 
more complex especially for deep submicron. 
The fundamental unity in the definition of a set of design rules is the minimum 
line width .It stands for the minimum mask dimension that can be safely 
transferred to the semiconductor material .Even for the same minimum 
dimension, design rules tend to differ from company to company, and from 
process to process. Now, CAD tools allow designs to migrate between 
compatible processes. 
Layer Representations 
 
With increase of complexity in the CMOS processes, the visualization of all 
the mask levels that are used in the actual fabrication process becomes 
inhibited. The layer concept translates these masks to a set of conceptual layout 
levels that are easier to visualize by the circuit designer. From the designer's 
viewpoint, all CMOS designs have the following entities: 
 
•   Two different substrates and/or wells: which are p-type for NMOS and n-
type for 
PMOS. 
• Diffusion regions (p+ and n+): which defines the area where transistors 
can be formed. These regions are also called active areas. Diffusion of an 
inverse type is needed to implement contacts to the well or to substrate.These 
are called select regions. 
•   Transistor gate electrodes : Polysilicon layer 



•   Metal interconnect layers 
•   Interlayer contacts and via layers. 
 
The layers for typical CMOS processes are represented in various figures in 
terms of: 
•   A color scheme (Mead-Conway colors). 
•   Other color schemes designed to differentiate CMOS structures. 
•   Varying stipple patterns 
•   Varying line styles 
 

 
Mead Conway Color coding for layers. 
 
An example of layer representations for CMOS inverter using above design 
rules is shown below- 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
CMOS Inverter Layout Figure 
 
 
 
Stick Diagrams 
 
Another popular method of symbolic design is "Sticks" layout. In this, the 
designer draws a freehand sketch of a layout, using colored lines to represent 
the various process layers such as diffusion, metal  and polysilicon .Where 
polysilicon crosses diffusion, transistors are created and where metal wires join 
diffusion or polysilicon, contacts are formed. 
 
This notation indicates only the relative positioning of the various design 
components. The absolute coordinates of these elements are determined 
automatically by the editor using a compactor. The compactor translates the 
design rules into a set of constraints on the component positions, and solve a 
constrained optimization problem that attempts to minimize the area or cost 
function. 
 
The advantage of this symbolic approach is that the designer does not have to 
worry about design rules, because the compactor ensures that the final layout is 
physically correct. The disadvantage of the symbolic approach is that the 
outcome of the compaction phase is often unpredictable. The resulting layout 
can be less dense than what is obtained with the manual approach. In addition, 
it does not show exact placement, transistor sizes, wire lengths, wire widths, 
tub boundaries. 
 
 



For example, stick diagram for CMOS Inverter is shown below. 

 
Stick Diagram of a CMOS Inverter 
 
LAYOUT DIAGRAM 
Layout rules are used to prepare the photo mask used in the fabrication of 
integrated circuits. The rules provide the necessary communication link 
between the circuit designer and process engineer. Design rules represent the 
best possible compromise between performance and yield. 
The design rules primarily address two issues - 
1. The geometrical reproductions of features that can be reproduced by mask 
making and lithographical processes. 
2. Interaction between different layers 
Design rules can be specified by different approaches 
1. λ-based design rules 
2. μ-based design rules 
As λ-based layout design rules were originally devised to simplify the industry- 
standard μ-based design rules and to allow scaling capability for various 
processes. It must be emphasized, however, that most of the submicron CMOS 
process design rules do not lend themselves to straightforward linear scaling. 
The use of λ-based design rules must therefore be handled with caution in sub-
micron geometries. 
λ-based Design Rules 
Features of λ-based Design Rules: λ-based Design Rules have the following 
features- 
•   λ is the size of a minimum feature 
•   All the dimensions are specified in integer multiple of λ. 
•   Specifying λ particularizes the scalable rules. 



 

 

•   Parasitic are generally not specified in λ units 
•   These rules specify geometry of masks, which will provide reasonable 
yields 
Guidelines for using λ-based Design Rules: 
 

 
As, Minimum line width of poly is 2λ & Minimum line width of diffusion is 2λ 
 
 
 
 
 
As Minimum distance between two diffusion layers 3λ 
 
 
 
 
 
As It is necessary for the poly to completely cross active, other wise the 
transistor that has been created crossing of diffusion and poly, will be shorted 
by diffused path of source and drain. 
Contact cut on metal 
 
 
 
 
Contact window will be of 2λ by 2λ that is minimum feature size while metal 
deposition is of 4λ by 4λ for reliable contacts. 
 
In Metal 
 



 
Two metal wires have 3λ distance between them to overcome capacitance 
coupling and high frequency coupling. Metal wires width can be as large as 
possible to decrease resistance. 
 
 
 
Buttering contact 
 
 
Buttering contact is used to make poly and silicon contact. Window's original 
width is 4λ, but on overlapping width is 2λ. 
So actual contact area is 6λ by 4λ. 
The distance between two wells depends on the well potentials as shown 
above. The reason for 8l is that if both wells are at same high potential then the 
depletion region between them may touch each other causing punch-through. 
The reason for 6l is that if both wells are at different potentials then depletion 
region of one well will be smaller, so both depletion region will not touch each 
other so 6l will be good enough. 

 
 
The active region has length 10λ which is distributed over the followings- 
•   2λ for source diffusion 
•   2λ for drain diffusion 
•   2λ for channel length 
•   2λ for source side encroachment 
•   2λ for drain side encroachment 
 

Basic Definitions in Delay: 



Before calculating the propagation delay of CMOS Inverter, we will define 
some basic terms- 

•   Switching speed - limited by time taken to charge and discharge, CL. 

•   Rise time, tr: waveform to rise from 10% to 90% of its steady state value 

•   Fall time tf: 90% to 10% of steady state value 

•    Delay time, td: time difference between input transition (50%) and 50% 
output level 

 
Propagation delay graph 

The propagation delay tp of a gate defines how quickly it responds to a change 
at its inputs, it expresses the delay experienced by a signal when passing 
through a gate. It is measured between the 50% transition points of the input 
and output waveforms as shown in the figure 16.1 for an inverting gate. The 

 defines the response time of the gate for a low to high output transition, 

while  refers to a high to low transition. The propagation delay  as the 
average of the two 

 

Quick Estimates: 

We will give an example of how to calculate quick estimate. From fig, we can 
write following equations. 



 
Example CMOS Inverter Circuit 

 

 

 
 Propagation Delay of above MOS circuit 

From figure, when Vin = 0 the capacitor CL charges through the PMOS, and 
when 

Vin = 5 the capacitor discharges through the N-MOS. The capacitor current is – 

 

 

From this the delay times can be derived as 

 

The expressions for the propagation delays as denoted in the figure can be 
easily seen to be 



 

 

 

Rise and Fall Times 

 

 

 

 

 

 

 

 

trjectory of n-transistor operating point 

Above Figure shows the trajectory of the n-transistor operating point as the 
input voltage, Vin(t), changes from 0V to VDD. Initially, the end-device is cutt-
off and the load capacitor is charged to VDD. This illustrated by X1 on the 
characteristic curve. Application of a step voltage (VGS = VDD) at the input of 
the inverter changes the operating point to X2. From there onwards the 
trajectory moves on the VGS= VDD characteristic curve towards point X3 at 
the origin. 

Thus it is evident that the fall time consists of two intervals: 

1. tf1=period during which  the capacitor voltage, Vout, drops from  0.9VDD to 
(VDD–Vtn) 

2. tf2=period during which the capacitor voltage, Vout, drops from (VDD–Vtn) 
to 0.1VDD. 



 

 

Equivalent circuit for showing behav. of tf1 

 

Equivalent circuit for showing behav. of tf2 

As we saw in last section, the delay periods can be derived using the general 
equation 

 

while in saturation, 

 

Integrating from t = t1, corresponding to Vout=0.9 VDD, to t = t2 
corresponding to Vout=(VDD-Vtn) results in, 

 

 



Rise and Fall time graph 

When the n-device begins to operate in the linear region, the discharge current 
is no longer constant. The time tf1 taken to discharge the capacitor voltage from 
(VDD-Vtn) to 0.1VDD can be obtained as before. In linear region, 

 

 
Thus the complete term for the fall time is, 

 
The fall time tf can be approximated as, 

 
From this expression we can see that the delay is directly proportional to the 
load capacitance.  Thus  to  achieve  high  speed  circuits  one  has  to  minimize  
the  load capacitance seen by a gate. Secondly it is inversely proportion to the 
supply voltage i.e. as  the  supply  voltage  is  raised  the  delay  time  is  
reduced.  Finally,  the  delay  is proportional to the βn of the driving transistor 
so increasing the width of a transistor decreases the delay. 

Due to the symmetry of the CMOS circuit the rise time can be similarly 
obtained as; For equally sized n and p transistors (where βn=2βp) tf=tr 

Thus the fall time is faster than the rise time primarily due to different carrier 
mobilites associated with the p and n devices thus if we want tf=tr we need to 
make βn/βp =1. This implies that the channel width for the p-device must be 
increased to approximately 2 to 3 times that of the n-device. 

The propagation delays if calculated as indicated before turn out to be, 



 

 Rise and Fall time graph of Output 
w.r.t Input 

If we consider the rise time and fall time of the input signal as well, then 

 
These are the rms values for the propagation delays. 

SCALING OF MOS TRANSISTOR: 

 Types of Scaling  
Two types of scaling are common:  

1) constant field scaling and  
2) constant voltage scaling.  

 
Constant field scaling yields the largest reduction in the power-delay product of 
a single transistor. However, it requires a reduction in the power supply voltage 
as one decreases the minimum feature size.  
Constant voltage scaling does not have this problem and is therefore the 
preferred scaling method since it provides voltage compatibility with older 
circuit technologies. The disadvantage of constant voltage scaling is that the 
electric field increases as the minimum feature length is reduced. This leads to 
velocity saturation, mobility degradation, increased leakage currents and lower 
breakdown voltages. After scaling, the different Mosfet parameters will be 
converted as given by table below:  
Before Scaling After Constant Field Scaling After Constant Voltage Scaling 



 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



                                                           UNIT III 
 

SUBSYSTEM DESIGN & LAYOUT 
 
 

 

Ratioed Logic: 

Instead of combination of active pull down and pull up networks such a gate 
consists of an NMOS pull down network that realizes the logic function and a 
simple load device. For an inverter PDN is single NMOS transistor. 

 

 

 

Ratioed Logic Circuit 

The load can be a passive device, such as a resistor or an active element as a 
transistor. Let us assume that both PDN and load can be represented as 
linearized resistors. The operation is as follows: For a low input signal the pull 
down network is off and the output is high by the load. When the input goes 
high the driver transistor turns on, and the resulting output voltage is determined 
by the resistive division between the impedances of pull down and load 
network: 

VOL= RDVDD/(RD+RL) 

where RD = pulldown n/w resistance, RL= load resistance. 



To keep the low noise margin high it is important to chose RL>>RD. This style 
of logic therefore called ratioed, because a careful PDN scaling of impedances 
(or transistor sizes) is required to obtain a workable gate. This is in contrast to 
the ratioless logic style as complementary CMOS, where the low and high level 
don’t depend upon transistor sizes. As a satisfactory level we keep RL>=4RD. 
To achieve this, (W/L)D/(W/L)L> 4. 

Pass Transistor Logic 

The fundamental building block of nMOS dynamic logic circuit, consisting of 
an nMOS 

pass transistor is shown in figure  

 

 

 

 

 

 

 

 

 Pass Transistor Logic Circuit 

 

The pass transistor MP is driven by the periodic clock signal and acts as an 
access switch to either charge up or down the parasitic capacitance, Cx, 
depending on the input signal Vin. Thus there are 2 possible operations when 
the clock signal is active are the logic “1” transfer( charging up the capacitance 
Cx to logic high level) and the logic “0” transfer( charging down the 
capacitance Cx to a logic low level). In either case, the output of the depletion 
load of  the nMOS inverter obviously  assumes a logic low or high  level, 
depending on the voltage Vx. The pass transistor MP provides the only current 
path to the intermediate capacitive node X. when clock signal becomes inactive 
(clk=0) the pass transistor ceases to conduct and the charge is stored in the 
parasitic capacitor Cx continues to determine the output level of the inverter. 



Logic “1” Transfer: Assume that the Vx = 0 initially. A logic "1"level is applied 
to the input terminal which corresponds to Vin=VOH=VDD. Now the clock 
signal at the gate of the pass transistor goes from 0 to VDD at t=0. It can be 
seen that the pass transistor starts to conduct and operate in saturation 
throughout this cycle since VDS=VGS. Consequently VDS> VGSVtn. 

Analysis: The pass transistor operating in saturation region starts to charge up 
the capacitor Cx, thus: 

 

The previous equation for Vx(t) can be solved as- 

 

The variation of the node voltage Vx(t)is plotted as a function of time in fig. 
The voltage rises from its initial value of 0 and reaches Vmax =VDD-Vtn after 
a large time. The pass transistor will turn off when Vx = Vmax. Since Vgs= 
Vtn. Therefore Vx can never attain VDD during logic 1 transfer. Thus we can 
use buffering to overcome this problem. 

 

 

Node Voltage Vx vs t 

Logic “0” Transfer: Assume that the Vx=1 

Initially. A logic“0” level is applied to the input terminal which corresponds to 
Vin=1. Now the clock signal at the gate of the pass transistor goes from 0 to 
VDD at t=0. It can be seen that the pass transistor starts to conduct and operate 
in linear mode throughout this cycle and the drain current flows in the opposite 
direction to that of charge up. 



Analysis: We can write – 

 

The above equation for Vx(t) can be solved as – 

 

Plot of Vx(t) is shown in figure  

 

 

 

 

 

Node Voltage Vx vs t 

 

 

 

Dynamic Logic Circuits 

In case of static CMOS for a fan-in of N, 2N transistors are required. In order to 
reduce this, various other design logics were used like pseudo-NMOS logic and 
pass transistor logic. However the static power consumption in these cases 
increased. An alternative to these design logics is Dynamic logic, which 
reduces the number of transistors at the same time keeps a check on the static 
power consumption. 

Principle: A block diagram of a dynamic logic circuit is as shown in fig 19.31. 
This uses 

NMOS block to implement its logic 

The operation of this circuit can be explained in two modes. 



1. Precharge 

2. Evaluation 

 

 Dynamic CMOS Block Diagram 

In the precharge mode, the CLK input is at logic 0. This forces the output to 
logic 1, charging the load capacitance to VDD. Since the NMOS transistor M1 
is off the pulldown path is disabled. There is no static consumption in this case 
as there is no direct path between supply and ground. 

In the evaluation mode, the CLK input is at logic 1. Now the output depends on 
the PDN block. If there exists a path through PDN to ground (i.e. the PDN 
network is ON), the capacitor CL will discharge else it remains at logic 1.As 
there exists only one path between the output node and a supply rail, which can 
only be ground, the load capacitor can discharge only once and if this happens, 
it cannot charge until the next precharge operation.  Hence  the inputs  to  the  
gate  can  make  at  most  one  transition  during evaluation 

 

 

 

 

 

 

 

 



 
 

 DOMINO CMOS Block Diagram 

 

Advantages of dynamic logic circuits: 

 

1. As can be seen, the number of transistors required here are N+2 as compared 
to 

2N in the Static CMOS circuits. 

2. This circuit is still a ratioless circuit as in Static case. Hence, progressive 
sizing and ordering of the transistors in the PDN block is important. 

3. As can be seen, the static power loss is negligible. 

Disadvantages of dynamic logic circuits: 

1. The penalty paid in such circuits is that the clock must run everywhere to 
each such block as shown in the diagram. 

2. The major problem in such circuits is that the output node is at Vdd till the 
end of the precharge mode. Now if the CLK in the next block arrives earlier 
compared to the CLK in this block, or the PDN network in this block takes a 
longer time to evaluate its output, then the next block will start to evaluate using 
this erroneous value 

The second part of the disadvantage can be eliminated by using DOMINO 
CMOS circuits which are as shown below. 

As can be seen the output at the end of precharge is inverted by the inverter to 
logic 0. Thus the next block will not be evaluated till this output has been 
evaluated. As an ending point, it must be noted that this also has a disadvantage 
that since at each stage the output is inverted, the logic must be changed to 
accommodate this. 

STATIC CMOS LOGIC: 

The most widely used logic style is static complementary CMOS. The static 
CMOS style is really an extension of the static CMOS inverter to multiple 
inputs. In review, the primary advantage of the CMOS structure is robustness 



(i.e, low sensitivity to noise), good performance, and low power consumption 
(with no static power consumption). As we will The complementary CMOS 
circuit style falls under a broad class of logic circuits called static circuits in 
which at every point in time (except during the switching transients), each gate 
output is connected to either VDD or Vss via a low-resistance path. Also, the 
outputs of the gates assume at all times the value of the Boolean function 
implemented by the circuit (ignoring, once again, the transient effects during 
switching periods). This is in contrast to the dynamic circuit class, that relies on 
temporary storage of signal values on the capacitance of high-impedance circuit 
nodes. The latter approach has the advantage that the resulting gate is simpler 
and faster. On the other hand, its design and operation are more involved than 
those of its static counterpart, due to an increased sensitivity to noise. 

 

Two I/P NAND gate in complementary Static CMOS Style 

CMOS TRANSMISSION GATE: 

We usually see MOSFETs arranged with their sources and drains 
connected—either directly or through, for example, a resistor or active load—
to positive and negative supply rails, with the gate acting as the input 
terminal. This is true in both analog circuits, such as the common-source 
amplifier, and digital circuits, such as the ubiquitous CMOS inverter. It’s 
good to remember, though, that the MOSFET is not limited to configurations 
such as these. 

The channel created by a sufficiently high gate-to-source voltage allows 
current to flow between the source and drain terminals, and in this sense the 
MOSFET is a voltage-controlled switch. Thus, there is no law that prevents 
us from using the source and drain as input and output terminals, with the 
control voltage applied to the gate. 



A single NMOS (or PMOS) transistor can be used as a voltage-controlled 
switch. The “circuit” (really just a single transistor) is the following: 

  

 
  

the arrow that usually identifies the source is removed.  This is because the 
source terminal actually changes according to whether V1 is higher than V2 or 
V2 is higher than V1. Also, the use of V1 and V2 instead of VIN and VOUT is 
intended to emphasize that this single NMOS transistor can indeed conduct 
current in both directions. 

As probably expected, this circuit is far from a perfect switch. One problem is 
the source voltage: The current through the MOSFET is influenced by the 
source voltage, and the source voltage depends on whatever signal is passing 
through the switch. Indeed, if the gate is controlled by a driver that cannot 
exceed VDD, the transistor can pass signals only as high as VDD minus the 
threshold voltage. This threshold-voltage limitation is made even worse by 
the body effect, which comes into play when the FET’s source and body 
terminals are not at the same potential. 

When you analyze and ponder this switch, you recognize a certain 
asymmetry. For example, if we are using this switch for pass-transistor logic, 
the NMOS can effectively pass a logic-low signal but not a full logic-high 
signal. Is it possible to modify the circuit in a way that will redress this 
asymmetry? If you are maintaining a good CMOS mentality, your intuition 
might tell you that we could achieve better overall performance by 
incorporating a PMOS transistor to compensate for the deficiencies of the 
NMOS.  



 
  

Here we have a PMOS in parallel with the NMOS; I used an “invert” circle to 
identify the PMOS transistor. Note that the control signal applied to the 
PMOS is the complement of the control signal applied to the NMOS; this is 
reminiscent of the CMOS inverter, where a logic-high voltage turns on the 
NMOS and a logic-low voltage turns on the PMOS. 

This CMOS transmission gate is a synergistic system—the NMOS provides 
good switch performance under conditions that are favorable for itself but not 
for the PMOS, and the PMOS provides good switch performance under 
conditions that are favorable for itself but not for the NMOS. The result is a 
simple yet effective bidirectional voltage-controlled switch that is suitable for 
both analog and digital applications. 

  

DOMINO LOGIC: 

 

Properties of Domino Logic  

 Only non-inverting logic can be implemented ‰  
 Very high speed ƒ  



 static inverter can be skewed, only L-H transition critical ƒ  
 Input capacitance reduced – smaller logical effort 

 
 

DESIGNING WITH DOMINO LOGIC: 

 

 
 
DIFFERENTIAL CASCODE VOLTAGE SWITCH LOGIC: 
 
 Performance advantage of ratioed circuits without the extra power  
• Requires complementary inputs – produces complementary outputs  
• Operation – two nMOS arrays  one for f, one for f – cross-coupled load 
pMOS – one path is always active 
 • since either f or f is always true – other path is turned off 
 • no static power generic differential logic gate differential AND/NAND 
gate (logic arrays turns off one load) 
 



 
 

Advantages of CVSL : 

 low load capacitance on inputs  
 no static power consumption  
 automatic complementary functions  

 Disadvantages: 

           requires complementary inputs  

           more transistors  for single function 

Clocked CMOS  logic 

The general arrangement may be made clearer by. The logic is implemented in 
both n- and p-transistors in the form of a pull-up p-block and a complementary 
n-block pulldown structure  as for the inverter-based CMOS logic discussed 
earlier. 

However, the logic in this case is evaluated (connected to the output) only 
during the on period of the clock. As might be expected, a clocked inverter 
circuit forms part of this family of logic as shown in Figure. Owing to the extra 
transistors in series with the output,slower rise-times and fall -times ca.n be 
expected 



 

 

NMOS NAND Gate: 

NMOS NAND Gate Use Vdd = 9.0Vdc. For the NMOS NAND gate shown 
below gate, using the 2N7000 MOSFET LTspice model such that Vto = 2.0. 
The input logic “1” = 9 volt and ground as a logic “0”. Make a truth table 
showing the four possible combinations of Vin1 and Vin2 and the outputs. 
Choose Rd (drain current limit resistor) such that the drain currents of the 
NMOS devices will be about 30mA when the Vout is in a low state. Then run a 
DC Bias Point simulation (use the added 2N7000 model in LTspice) on your 
design with the four possible input combinations for Vin1 and Vin2 to verify 
your gate. Observe the output voltage value for each input combination. Print 
your circuit schematic showing voltages for all four input combination 

 

 

 



 

NMOS NOR Gate: 

NMOS NOR Gate Use Vdd = 9.0Vdc. Design an NMOS NOR gate using the 
2N7000 MOSFET the model has Vto = 2.0 . Limit the drain current total to 
30mA with a drain resistor (Rd). Show all work for your design and drawing. 
Then simulate your design in LTspice with DC Bias Point simulations as you 
did for the NAND gate. Print out your circuit schematic showing voltages for 
all four input combination add from the view menu node voltage and drian 
current to display on the schematic. Also, fill in the truth table with all of the 
Bias Point simulation voltage values 

 

CMOS Inverter ,NAND and NOR gates: 

 



 

 

CMOS COMBINATIONAL LOGIC: 

Use DeMorgan relations to reduce functions  

• remove all NAND/NOR operations 

 • implement nMOS network  

• create pMOS by complementing operations 

 

 

 

 

Multiplexers (Data Selectors) 

Multiplexers are widely used and have many applications. They are also 
commonly available in a number of standard configurations in TTL and other 



logic families. In order to arrive at a standard cell for multiplexers, we will 
consider a commonly used circuit, the four-way multiplexer. 

The requirements and general arrangement of a four-way multiplexer are set out 
in Figure  from which we may write 

 

where S1 and S0 are the selector inputs. Note that in this case we do not need to 
be concerned about undefined ouput conditions since, if S1 and S0 have defined 
logic states, output Z must always be connected to one of I0 to I3. 

A transmission-gate-based CMOS Stick diagram is given 

 

 

 

 



For the nMOS case a standard cell is illustrated in Figure . The standard cell in 
this case measured 7 λ. x 11 λ and is shown in the dotted outline.Two versions 
of the cell are needed to complete the network, one version with a pass 
transistor as shown and the other version without. If computer-aided design 
tools are used, the two versions may be designed as one cell suitably 
parameterized to include or exclude the pass transistor.  

 

A General Logic Function Block 

An arrangement to generate any function of two variables (A, B) is readily 
formed from any form of four-way multiplexer. It will be seen that the required 
function is generated by driving the multiplexer select inputs from the required 
two variablesA and B and by 'programming' the inputs I0 to I3 appropriately with 
Os and 1 s, as indicated in the figure. Larger multiplexers may be similarly 
employed to generate any function of up to four variables ( 16-way 
multiplexer). 

 



 

CLOCKED SEQUENTIAL CIRCUITS: 
 
Two -phase Clocking: 
The clocked circuits to be considered here will be based on a two-phase non-
overlapping clock signal.A two-phase clock offers a great deal of freedom in 
sequential circuit design if theclock period and the duration of the signals 

 are correctly chosen. If this is the case,data is allowed to become 
stable before any further transfer takes place and there is no chance of race 
conditions occurring.Clocked circuitry is considerably easier to design than the 
corresponding asynchronous sequential circuitry. It does, however, usually pay 
the penalty of being slower. However, at this stage of learning VLSI design we 
will concentrate on two-phase clocked sequential circuits alone and thus 
simplify design procedures.  



 

 

A very simple arrangement using combinational logic and generating a two-
phase clock at the frequency of a single-phase input clock is set out in Figure. 
The input clock signal C is used to provide a delayed version of itself (CD) by 
passing it through an even number of inverters. The delay thus produced 
determines the underlap period for the two phase clock. Waveforms are as 
shown in Figure 

 



 

 
Dynamic Register Element: 

 



 
DYNAMIC SHIFT REGISTER: 

 

 



UNIT –IV 

Programmable Logic Devices (PLDs) 
 

 

Introduction: 
 

An IC that contains large numbers of gates, flip-flops, etc. that can be configured by 
the user to perform different functions is called a Programmable Logic Device 
(PLD). 

 

The internal logic gates and/or connections of PLDs can be changed/configured by a 
programming process. 

 

One of the simplest programming technologies is to use fuses. In the original state of 
the device, all the fuses are intact. 

 

Programming the device involves blowing those fuses along the paths that must be 
removed in order to obtain the particular configuration of the desired logic function. 

 

PLDs are typically built with an array of AND gates (AND-array) and an array of 
OR gates (OR-array). 

 
 

 

 

 

 

 

Advantages of PLDs: 
 

Problems of using standard ICs: 

Problems of using standard ICs in logic design are that they require hundreds or 
thousands of these ICs, considerable amount of circuit board space, a great deal of 
time and cost in inserting, soldering, and testing. Also require keeping a significant 
inventory of ICs. 



 

Advantages of using PLDs: 
 

Advantages of using PLDs are less board space, faster, lower power requirements 
(i.e., smaller power supplies), less costly assembly processes, higher reliability (fewer 
ICs and circuit connections means easier troubleshooting), and availability of design 
software. 

 

There are three fundamental types of standard PLDs: PROM, PAL, and PLA. 

 

A fourth type of PLD, which is discussed later, is the Complex Programmable Logic 
Device (CPLD), e.g., Field Programmable Gate Array (FPGA). 

 

A typical PLD may have hundreds to millions of gates. 



 

In order to show the internal logic diagram for such technologies in a concise form, it 
is necessary to have special symbols for array logic. 

 

Figure shows the conventional and array logic symbols for a multiple input AND and 
a multiple input OR gate. 

 
 

 

 

 

 

 

 

 

 

 

Three Fundamental Types of PLDs: 
 

The three fundamental types of PLDs differ in the placement of programmable 
connections in the AND-OR arrays. Figure shows the locations of the programmable 
connections for the three types. 

 



The PROM (Programmable Read Only Memory) has a fixed AND array 
(constructed as a decoder) and programmable connections for the output OR gates 
array. The PROM implements Boolean functions in sum-of-minterms form. 

 

The PAL (Programmable Array Logic) device has a programmable AND array 
and fixed connections for the OR array. 

 

The PLA (Programmable Logic Array) has programmable connections for both 
AND and OR arrays. So it is the most flexible type of PLD. 

 

The ROM (Read Only Memory) or PROM (Programmable Read Only 
Memory): 

 

The input lines to the AND array are hard-wired and the output lines to the OR array 
are programmable. 

 

Each AND gate generates one of the possible AND products (i.e., minterms). 

 

In the previous lesson, you have learnt how to implement a digital circuit using ROM. 

 

The PLA (Programmable Logic Array): 
 

In PLAs, instead of using a decoder as in PROMs, a number (k) of AND gates is used 
where k < 2n, (n is the number of inputs). 

 

Each of the AND gates can be programmed to generate a product term of the input 
variables and does not generate all the minterms as in the ROM. 

 

The AND and OR gates inside the PLA are initially fabricated with the links (fuses) 
among them. 

 

The specific Boolean functions are implemented in sum of products form by opening 
appropriate links and leaving the desired connections. 

 



A block diagram of the PLA is shown in the figure. It consists of n inputs, m outputs, 
and k product terms. 

 
 

 

 

 

 

 

 

 

 

 

The product terms constitute a group of k AND gates each of 2n inputs. 

 

Links are inserted between all n inputs and their complement values to each of the 
AND gates. 

 

Links are also provided between the outputs of the AND gates and the inputs of the 
OR gates. 



Since PLA has m-outputs, the number of OR gates is m. 

 

The output of each OR gate goes to an XOR gate, where the other input has two sets 
of links, one connected to logic 0 and other to logic 1. It allows the output function to 
be generated either in the true form or in the complement form. 

 

The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 = X/). The 
output does not change when the XOR input is connected to 0 (since X ⊕ 0 = X). 

 

Thus, the total number of programmable links is 2n x k + k x m + 2m. 

 

The size of the PLA is specified by the number of inputs (n), the number of product 
terms (k), and the number of outputs (m), (the number of sum terms is equal to the 
number of outputs). 

 

Example: 
 

Implement the combinational circuit having the shown truth table, using PLA. 
 
 

 

 

 

 

 

 

 

 

Each product term in the expression requires an AND gate. To minimize the cost, it is 
necessary to simplify the function to a minimum number of product terms. 

 
 

 

 

 



Designing using a PLA, a careful investigation must be taken in order to reduce the 
distinct product terms. Both the true and complement forms of each function should be 
simplified to see which one can be expressed with fewer product terms and which one 
provides product terms that are common to other functions. 

 

The combination that gives a minimum number of product terms is: 

F1
’ = AB + AC + BC or F1 = (AB + AC + BC)’ 

F2 = AB + AC + A’B’C’ 

 

This gives only 4 distinct product terms: AB, AC, BC, and A’B’C’. 

 

 

So the PLA table will be as follows: 
 

 

 

 

 

 

 



 

For each product term, the inputs are marked with 1, 0, or – (dash). If a variable in the 
product term appears in its normal form (unprimed), the corresponding input variable 
is marked with a 1. 

 

A 1 in the Inputs column specifies a path from the corresponding input to the input of 
the AND gate that forms the product term. 

 

A 0 in the Inputs column specifies a path from the corresponding complemented 
input to the input of the AND gate. A dash specifies no connection. 

 

The appropriate fuses are blown and the ones left intact form the desired paths. It is 
assumed that the open terminals in the AND gate behave like a 1 input. 

 

In the Outputs column, a T (true) specifies that the other input of the corresponding 
XOR gate can be connected to 0, and a C (complement) specifies a connection to 1. 

 

Note that output F1 is the normal (or true) output even though a C (for complement) 
is marked over it. This is because F1’ is generated with AND-OR circuit prior to the 
output XOR. The output XOR complements the function F1’ to produce the true F1 
output as its second input is connected to logic 1. 

 



The PAL (Programmable Array Logic): 
 

The PAL device is a PLD with a fixed OR array and a programmable AND array. 

 

As only AND gates are programmable, the PAL device is easier to program but it is 
not as flexible as the PLA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The device shown in the figure has 4 inputs and 4 outputs. Each input has a buffer-
inverter gate, and each output is generated by a fixed OR gate. 

 

The device has 4 sections, each composed of a 3-wide AND-OR array, meaning that 
there are 3 programmable AND gates in each section. 

 

Each AND gate has 10 programmable input connections indicating by 10 vertical 
lines intersecting each horizontal line. The horizontal line symbolizes the multiple 
input configuration of an AND gate. 

 

One of the outputs F1 is connected to a buffer-inverter gate and is fed back into the 
inputs of the AND gates through programmed connections. 

 



 

Designing using a PAL device, the Boolean functions must be simplified to fit into 
each section. 

 

The number of product terms in each section is fixed and if the number of terms in the 
function is too large, it may be necessary to use two or more sections to implement 
one Boolean function. 

 

 

Example: 
 

Implement the following Boolean functions using the PAL device as shown above: 

 

W(A, B, C, D) = ∑m(2, 12, 13) 
 

X(A, B, C, D) = ∑m(7, 8, 9, 10, 11, 12, 13, 14, 15) 

Y(A, B, C, D) = ∑m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) 

Z(A, B, C, D) = ∑m(1, 2, 8, 12, 13) 

 

Simplifying the 4 functions to a minimum number of terms results in the following 
 

Boolean functions: 

 

W = ABC’ + A’B’CD’ 
 

X = A + BCD 

Y = A’B + CD + B’D’ 

Z = ABC’ + A’B’CD + AC’D’ + A’B’C’D 

=W +AC’D’ + A’B’C’D 

 

 



 

Note that the function for Z has four product terms. The logical sum of two of these 
terms is equal to W. Thus, by using W, it is possible to reduce the number of terms for 
Z from four to three, so that the function can fit into the given PAL device. 

 

The PAL programming table is similar to the table used for the PLA, except that only 
the inputs of the AND gates need to be programmed. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows the connection map for the PAL device, as specified in the 
programming table. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since both W and X have two product terms, third AND gate is not used. If all the 
inputs to this AND gate left intact, then its output will always be 0, because it receives 
both the true and complement of each input variable i.e., AA’ =0 

 

Complex Programmable Logic Devices (CPLDs): 
 

A CPLD contains a bunch of PLD blocks whose inputs and outputs are connected 
together by a global interconnection matrix. 

 

Thus a CPLD has two levels of programmability: each PLD block can be 
programmed, and then the interconnections between the PLDs can be programmed. 

 



Field Programmable Gate Arrays (FPGAs): 
 

The FPGA consists of 3 main structures: 

1. Programmable logic structure, 
2. Programmable routing structure, and 
3. Programmable Input/Output (I/O). 

 

1. Programmable logic structure  

The programmable logic structure FPGA consists of a 2-dimensional array of 
configurable logic blocks (CLBs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Each CLB can be configured (programmed) to implement any Boolean function of its 
input variables. Typically CLBs have between 4-6 input variables. Functions of larger 
number of variables are implemented using more than one CLB. 

 

In addition, each CLB typically contains 1 or 2 FFs to allow implementation of 
sequential logic. 

 

Large designs are partitioned and mapped to a number of CLBs with each CLB 
configured (programmed) to perform a particular function. 

 

These CLBs are then connected together to fully implement the target design. 
 

Connecting the CLBs is done using the FPGA programmable routing structure. 

 

2. Programmable routing structure 
 

To allow for flexible interconnection of CLBs, FPGAs have 3 programmable routing 
resources: 

 

1. Vertical and horizontal routing channels which consist of different length wires 
that can be connected together if needed. These channel run vertically and 
horizontally between columns and rows of CLBs as shown in the Figure. 



2. Connection boxes, which are a set of programmable links that can connect input and output pins of the 
CLBs to wires of the vertical or the horizontal routing channels. 

 

3. Switch boxes, located at the intersection of the vertical and horizontal channels. These are a set of 
programmable links that can connect wire segments in the horizontal and vertical channels. (see 
animation in authorware version)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Programmable I/O 
 

These are mainly buffers that can be configured either as input buffers, output buffers or input/output 
buffers. 

 

They allow the pins of the FPGA chip to function either as input pins, output pins or input/output pins. 

 



 Programmable 
 
 

I/Os 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FPGA DESIGN FLOW 

 

 

 
 

 
Design Entry: 

 There are different techniques for design entry. Schematic based, Hardware Description 
Language and combination of both etc. . Selection of a method depends on the design and 



designer. If the designer wants to deal more with Hardware, then Schematic entry is the better 
choice. When the design is complex or the designer thinks the design in an algorithmic way 
then HDL is the better choice. Language based entry is faster but lag in performance and 
density. HDLs represent a level of abstraction that can isolate the designers from the details 
of the hardware implementation. Schematic based entry gives designers much more visibility 
into the hardware. It is the better choice for those who are hardware oriented. 

Synthesis : 

The process which translates VHDL or Verilog code into a device netlist formate. i.e a 
complete circuit with logical elements( gates, flip flops, etc…) for the design.If the design 
contains more than one sub designs, ex. to implement a processor, we need a CPU as one 
design element and RAM as another and so on, then the synthesis process generates netlist 
for each design element Synthesis process will check code syntax and analyze the hierarchy 
of the design which ensures that the design is optimized for the design architecture, the 
designer has selected. 

Implementation: 

This process consists a sequence of three steps 1. Translate 2. Map 3. Place and Route 
Translate process combines all the input netlists and constraints to a logic design file. This 
information is saved as a NGD (Native Generic Database) file. This can be done using NGD 
Build program. Here, defining constraints is nothing but, assigning the ports in the design to 
the physical elements (ex. pins, switches, buttons etc) of the targeted device and specifying 
time requirements of the design. This information is stored in a file named UCF (User 
Constraints File). Tools used to create or modify the UCF are PACE, Constraint Editor etc 

Map: 

 This process divides the whole circuit with logical elements into sub blocks such that they 
can be fit into the FPGA logic blocks. That means map process fits the logic defined by the 
NGD file into the targeted FPGA elements (Combinational Logic Blocks (CLB), Input 
Output Blocks (IOB)) and generates an NCD (Native Circuit Description) file which 
physically represents the design mapped to the components of FPGA. MAP program is used 
for this purpose. 

Place and Route: 

PAR program is used for this process. The place and route process places the sub blocks from 
the map process into logic blocks according to the constraints and connects the logic blocks. 
Ex. if a sub block is placed in a logic block which is very near to IO pin, then it may save the 
time but it may effect some other constraint. So trade off between all the constraints is taken 
account by the place and route process The PAR tool takes the mapped NCD file as input and 
produces a completely routed NCD file as output. Output NCD file consists the routing 
information. 

 

 



 

 

 Structure of a basic FPGA cell (Configurable Logic Block ) 
 

 

 

 



 

 

 

 

 



 

UNIT V 
HARDWARE DESCRIPTION LANGUAGES 

Introduction 

 

With the advent of VLSI technology and increased usage of digital circuits, designers has to design single chips with millions of transistors. 

It became almost impossible to verify these circuits of high complexity on breadboard. Hence Computer-aided techniques became critical 

for verification and design of VLSI digital circuits.As designs got larger and more complex, logic simulation assumed an important role in 

the design process. Designers could iron out functional bugs in the architecture before the chip was designed further. All these factors which 

led to the evolution of Computer-Aided Digital Design, intern led to the emergence of Hardware Description Languages. 

Verilog HDL and VHDL are the popular HDLs.Today, Verilog HDL is an accepted IEEE standard. In 1995, the original standard IEEE 

1364-1995 was approved. IEEE 1364-2001 is the latest Verilog HDL standard that made significant improvements to the original standard. 

Specifications comes first, they describe abstractly the functionality, interface, and the architecture of the digital IC circuit to be designed. 

 Behavioral description is then created to analyze the design in terms of functionality, performance, compliance to given standards, 

and other specifications. 

 RTL description is done using HDLs. This RTL description is simulated to test functionality. From here onwards we need the help 

of EDA tools. 

 RTL description is then converted to a gate-level net list using logic synthesis tools. A gate-level netlist is a description of the 

circuit in terms of gates and connections between them, which are made in such a way that they meet the timing, power and area 

specifications. 

 Finally a physical layout is made, which will be verified and then sent to fabrication. 

 

Importance of HDLs 

RTL descriptions, independent of specific fabrication technology can be made an verified.functional verification of the design can be done 

early in the design cycle. 

 Better representation of design due to simplicity of HDLs when compared to gate-level schematics. 

 Modification and optimization of the design became easy with HDLs. 

 Cuts down design cycle time significantly because the chance of a functional bug at a later stage in the design-flow is minimal. 

Verilog HDL 

 

Verilog HDL is one of the most used HDLs. It can be used to describe designs at four levels of abstraction: 

1. Algorithmic level. 

2. Register transfer level (RTL). 



3. Gate level. 

4. Switch level (the switches are MOS transistors inside gates). 

Why Verilog ? 

 Easy to learn and easy to use, due to its similarity in syntax to that of the C programming language. 

 Different levels of abstraction can be mixed in the same design. 

 Availability of Verilog HDL libraries for post-logic synthesis simulation. 

 Most of the synthesis tools support Verilog HDL. 

 The Programming Language Interface (PLI) is a powerful feature that allows the user to write custom C code to interact with the 

internal data structures of Verilog. Designers can customize a Verilog HDL simulator to their needs with the PLI. 

Digital design methods 

 

Digital design methods are of two types: 

1. Top-down design method : In this design method we first define the top-level block and then we build necessary sub-blocks, 

which are required to build the top-level block. Then the sub-blocks are divided further into smaller-blocks, and so on. The bottom 

level blocks are called as leaf cells. By saying bottom level it means that the leaf cell cannot be divided further. 

2. Bottom-up design method : In this design method we first find the bottom leaf cells, and then start building upper sub-blocks and 

building so on, we reach the top-level block of the design. 

In general a combination of both types is used. These types of design methods helps the design architects, logics designers, and circuit 

designers. Design architects gives specifications to the logic designers, who follow one of the design methods or both. They identify the leaf 

cells. Circuit designers design those leaf cells, and they try to optimize leaf cells in terms of power, area, and speed. Hence all the design 

goes parallel and helps finishing the job faster. 

Operators 

 

There are three types of operators: unary, binary, and ternary, which have one, two, and three operands respectively. 

 

Unary : Single operand, which precede the operand. 

Ex: x = ~y 

~ is a unary operator 

y is the operand 

 

binary : Comes between two operands. 

Ex: x = y || z 

|| is a binary operator 

y and z are the operands 

 

ternary : Ternary operators have two separate operators that separate three operands. 



Ex: p = x ? y : z 

? : is a ternary operator 

x, y, and z are the operands 

 

List of operators is given here. 

 

Comments 

Verilog HDL also have two types of commenting, similar to that of C programming language. // is used for single line commenting and '/*' 

and '*/' are used for commenting multiple lines which start with /* and end with */. 

EX: // single line comment 

/* Multiple line 

commenting */ 

/* This is a // LEGAL comment */ 

/* This is an /* ILLEGAL */ comment */ 

 

Whitespace 

 - \b - backspace 

 - \t - tab space 

 - \n - new line 

In verilog Whitespace is ignored except when it separates tokens. Whitespace is not ignored in strings. Whitesapces are generally used in 

writing test benches. 

 

Strings 

 

A string in verilog is same as that of C programming language. It is a sequence of characters enclosed in double quotes. String are treated as 

sequence of one byte ASCII values, hence they can be of one line only, they cannot be of multiple lines. 

Ex: " This is a string " 

" This is not treated as 

string in verilog HDL " 

 

Identifiers 

 

Identifiers are user-defined words for variables, function names, module names, block names and instance names.Identifiers begin with a 

letter or underscore and can include any number of letters, digits and underscores. It is not legal to start identifiers with number or the 

dollar($) symbol in Verilog HDL. Identifiers in Verilog are case-sensitive. 

 

Keywords 

 



Keywords are special words reserved to define the language constructs. In verilog all keywords are in lowercase only. A list of all keywords 

in Verilog is given below: 

always 

and 

assign 

attribute 

begin 

buf 

bufif0 

bufif1 

case 

casex 

casez 

cmos 

deassign 

default 

defparam 

disable 

edge 

else 

end 

endattribute 

endcase 

endfunction 

endmodule 

endprimitive 

endspecify 

endtable 

endtask 

event 

for 

force 

forever 

fork 

function 

highz0 

highz1 

if 

ifnone 

initial 

inout 

input 

integer 

join 

medium 

module 

large 

macromodule 

nand 

negedge 

nmos 

nor 

not 

notif0 

notif1 

or 

output 

parameter 

pmos 

posedge 

primitive 

pull0 

pull1 

pulldown 

pullup 

rcmos 

real 

realtime 

reg 

release 

repeat 

rnmos 

rpmos 

rtran 

rtranif0 

rtranif1 

scalared 

signed 

small 

specify 

specparam 

strength 

strong0 

strong1 

supply0 

supply1 

table 

task 

time 

tran 

tranif0 

tranif1 

tri 

tri0 

tri1 

triand 

trior 

trireg 

unsigned 

vectored 

wait 

wand 

weak0 

weak1 

while 

wire 

wor 

xnor 

xor 

 

Verilog keywords also includes compiler directives, system tasks, and functions. Most of the keywords will be explained in the later 

sections. 

 

Number Specification 

 

Sized Number Specification 

 

Representation: [size]'[base][number]  

 [size] is written only in decimal and specifies the number of bits. 



 [base] could be 'd' or 'D' for decimal, 'h' or 'H' for hexadecimal, 'b' or 'B' for binary, and 'o' or 'O' for octal. 

 [number] The number is specified as consecutive digits. Uppercase letters are legal for number specification (in case of 

hexadecimal numbers). 

Ex: 4'b1111 : 4-bit binary number 

16'h1A2F : 16-bit hexadecimal number 

32'd1 : 32-bit decimal number 

8'o3 : 8-bit octal number 

 

Unsized Number Specification 

 

By default numbers that are specified without a [base] specification are decimal numbers. Numbers that are written without a [size] 

specification have a default number of bits that is simulator and/or machine specific (generally 32). 

 

Ex: 123 : This is a decimal number 

'hc3 : This is a hexadecimal number 

Number of bits depends on simulator/machine, generally 32. 

 

x or z values 

 

x - Unknown value. 

z - High impedance value 

An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base, and one bit for a number in the 

binary base. 

 

Note: If the most significant bit of a number is 0, x, or z, the number is automatically extended to fill the most significant bits, respectively, 

with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is also zero extended. 

 

Negative Numbers 

 

Representation: -[size]'[base][number] 

 

Ex: -8'd9 : 8-bit negative number stored as 2's complement of 8 

-8'sd3 : Used for performing signed integer math 

4'd-2 : Illegal 

 

Underscore(_) and question(?) mark 

 

An underscore, "_" is allowed to use anywhere in a number except in the beginning. It is used only to improve readability of numbers and 

are ignored by Verilog. A question mark "?" is the alternative for z w.r.t. numbers 



Ex: 8'b1100_1101 : Underscore improves readability 

4'b1??1 : same as 4'b1zz1 

Value Set 

 

The Verilog HDL value set consists of four basic values: 

 0 - represents a logic zero, or a false condition. 

 1 - represents a logic one, or a true condition. 

 x - represents an unknown logic value. 

 z - represents a high-impedance state. 

The values 0 and 1 are logical complements of one another. Almost all of the data types in the Verilog HDL store all four basic values. 

 

Nets 

 

Nets are used to make connections between hardware elements. Nets simply reflect the value at one end(head) to the other end(tail). It 

means the value they carry is continuously driven by the output of a hardware element to which they are connected to. Nets are generally 

declared using the keyword wire. The default value of net (wire) is z. If a net has no driver, then its value is z. 

 

Registers 

 

Registers are data storage elements. They hold the value until they are replaced by some other value. Register doesn't need a driver, they 

can be changed at anytime in a simulation. Registers are generally declared with the keyword reg. Its default value is x. Register data types 

should not be confused with hardware registers, these are simply variables. 

 

Integers 

 

Integer is a register data type of 32 bits. The only difference of declaring it as integer is that, it becomes a signed value. When you declare it 

as a 32 bit register (array) it is an unsigned value. It is declared using the keyword integer. 

 

Real Numbers 

 

Real number can be declared using the keyword real. They can be assigned values as follows: 

real r_1; 

 

r_1 = 1.234; // Decimal notation. 

r_1 = 3e4; // Scientific notation.  

 

Parameters 

 



Parameters are the constants that can be declared using the keyword parameter. Parameters are in general used for customization of a 

design. Parameters are declared as follows: 

 

parameter p_1 = 123; // p_1 is a constant with value 123. 

 

Keyword defparam can be used to change a parameter value at module instantiation. Keyword localparam is usedd to declare local 

parameters, this is used when their value should not be changed. 

 

Vectors 

 

Vectors can be a net or reg data types. They are declared as [high:low] or [low:high], but the left number is always the MSB of the vector. 

 

wire [7:0] v_1; // v_1[7] is the MSB. 

reg [0:15] v_2; // v_2[15] is the MSB. 

 

In the above examples: If it is written as v_1[5:2], it is the part of the entire vector which contains 4 bits in order: v_1[5], v_1[4], v_1[3], 

v_1[2]. Similarly v_2[0:7], means the first half part of the vecotr v_2. 

Vector parts can also be specified in a different way: 

vector_name[start_bit+:width] : part-select increments from start_bit. In above example: v_2[0:7] is same as v_2[0+:8]. 

vector_name[start_bit-:width] : part-select decrements from start_bit. In above example: v_1[5:2] is same as v_1[5-:4]. 

 

Arrays 

 

Arrays of reg, integer, real, time, and vectors are allowed. Arrays are declared as follows: 

 

reg a_1[0:7]; 

real a_3[15:0]; 

wire [0:3] a_4[7:0]; // Array of vector 

integer a_5[0:3][6:0]; // Double dimensional array 

 

Strings 

 

Strings are register data types. For storing a character, we need a 8-bit register data type. So if you want to create string variable of length n. 

The string should be declared as register data type of length n*8. 

 

reg [8*8-1:0] string_1; // string_1 is a string of length 8. 

 

Time Data Type 

 

Time data type is declared using the keyword time. These are generally used to store simulation time. In general it is 64-bit long. 

 



time t_1; 

t_1 = $time; // assigns current simulation time to t_1. 

 

There are some other data types, but are considered to be advanced data types, hence they are not discussed here. 

A module is the basic building block in Verilog HDL. In general many elements are grouped to form a module, to provide a common 

functionality, which can be used at many places in the design. Port interface (using input and output ports) helps in providing the necessary 

functionality to the higher-level blocks. Thus any design modifications at lower level can be easily implemented without affecting the entire 

design code. The structure of a module is show in the figure below. 

Keyword module is used to begin a module and it ends with the keyword endmodule. The syntax is as follows: 

module module_name 

--- 

// internals 

--- 

endmodule 

 

Example: D Flip-flop implementation (Try to understand the module structure, ignore unknown constraints/statements). 

 

module D_FlipFlop(q, d, clk, reset); 

 

// Port declarations 

output q; 

reg q; 

input d, clk, reset; 

 

// Internal statements - Logic 

always @(posedge reset or poseedge clk) 

if (reset) 

q < = 1'b0; 

else  

q < = d; 

 

// endmodule statement 

endmodule 

 

Note: 

 Multiple modules can be defined in a single design file with any order. 

 See that the endmodule statement should not written as endmodule; (no ; is used). 

 All components except module, module name, and endmodule are optional. 



 The 5 internal components can come in any order. 

Modules communicate with external world using ports. They provide interface to the modules. A module definition contains list of ports. 

All ports in the list of ports must be declared in the module, ports can be one the following types: 

 Input port, declared using keyword input. 

 Output port, declared using keyword output. 

 Bidirectional port, declared using keyword inout. 

All the ports declared are considered to be as wire by default. If a port is intended to be a wire, it is sufficient to declare it as output, input, 

or inout. If output port holds its value it should be declared as reg type. Ports of type input and inout cannot be declared as reg because reg 

variables hold values and input ports should not hold values but simply reflect the changes in the external signals they are connected to. 

 

Port Connection Rules 

 Inputs: Always of type net(wire). Externally, they can be connected to reg or net type variable. 

 Outputs: Can be of reg or net type. Externally, they must be connected to a net type variable. 

 Bidirectional ports (inout): Always of type net. Externally, they must be connected to a net type variable. 

Note: 

 It is possible to connect internal and external ports of different size. In general you will receive a warning message for width 

mismatch. 

 There can be unconnected ports in module instances. 

Ports can declared in a module in C-language style: 

 

module module_1( input a, input b, output c); 

-- 

// Internals 

-- 

endmodule 

 

If there is an instance of above module, in some other module. Port connections can be made in two types. 

 

Connection by Ordered List: 

module_1 instance_name_1 ( A, B, C); 

Connecting ports by name: 

module_1 instance_name_2 (.a(A), .c(C), .b(B)); 

 

In connecting port by name, order is ignored. 

Logical Operators 



 

Symbol  Description  #Operators  

!  Logical negation  One  

||  Logical OR  Two  

&&  Logical AND  Two  

 

Relational Operators 

Symbol  Description  #Operators  

>  Greater than  Two  

<  Less than  Two  

>=  Greater than or equal to  Two  

<=  Less than or equal to  Two  

 

Equality Operators 

Symbol  Description  #Operators  

==  Equality  Two  

!=  Inequality  Two  

===  Case equality  Two  

!==  Case inequality  Two  

 

Arithmetic Operators 

Symbol  Description  #Operators  

+  Add  Two  

-  Substract  Two  

*  Multiply  Two  

/  Divide  Two  

**  Power  Two  

%  Modulus  Two  

 

Bitwise Operators 



Symbol  Description  #Operators  

~  Bitwise negation  One  

&  Bitwise AND  Two  

|  Bitwise OR  Two  

^  Bitwise XOR  Two  

^~ or ~^  Bitwise XNOR  Two  

 

Reduction Operators 

Symbol  Description  #Operators  

&  Reduction AND  One  

~&  Reduction NAND  One  

|  Reduction OR  One  

~|  Reduction NOR  One  

^  Reduction XOR  One  

^~ or ~^  Reduction XNOR  One  

 

Shift Operators 

Symbol  Description  #Operators  

>>  Right shift  Two  

<<  Left shift  Two  

>>>  Arithmetic right shift  Two  

<<<  Arithmetic left shift  Two  

 

Conditional Operators 

Symbol  Description  #Operators  

?:  Conditional  Two  

 

Replication Operators 

Symbol  Description  #Operators  

{ { } }  Replication  > One  



 

Concatenation Operators 

Symbol  Description  #Operators  

{ }  Concatenation  > One  

 

Operator Precedence 

 

 

Introduction 

 

In Verilog HDL a module can be defined using various levels of abstraction. There are four levels of abstraction in verilog. They are: 

 Behavioral or algorithmic level: This is the highest level of abstraction. A module can be implemented in terms of the design 

algorithm. The designer no need to have any knowledge of hardware implementation. 

 Data flow level: In this level the module is designed by specifying the data flow. Designer must how data flows between various 

registers of the design. 

 Gate level: The module is implemented in terms of logic gates and interconnections between these gates. Designer should know 

the gate-level diagram of the design. 

 Switch level: This is the lowest level of abstraction. The design is implemented using switches/transistors. Designer requires the 

knowledge of switch-level implementation details. 

Gate-level modeling is virtually the lowest-level of abstraction, because the switch-level abstraction is rarely used. In general, gate-level 

modeling is used for implementing lowest level modules in a design like, full-adder, multiplexers, etc. Verilog HDL has gate primitives for 

all basic gates. 

 

Gate Primitives 

 

Gate primitives are predefined in Verilog, which are ready to use. They are instantiated like modules. There are two classes of gate 

primitives: Multiple input gate primitives and Single input gate primitives. 

Multiple input gate primitives include and, nand, or, nor, xor, and xnor. These can have multiple inputs and a single output. They are 

instantiated as follows: 

 

// Two input AND gate. 

and and_1 (out, in0, in1); 

 

// Three input NAND gate. 

nand nand_1 (out, in0, in1, in2);  

 

// Two input OR gate. 



or or_1 (out, in0, in1); 

 

// Four input NOR gate. 

nor nor_1 (out, in0, in1, in2, in3); 

 

// Five input XOR gate. 

xor xor_1 (out, in0, in1, in2, in3, in4); 

 

// Two input XNOR gate. 

xnor and_1 (out, in0, in1); 

 

Note that instance name is not mandatory for gate primitive instantiation. The truth tables of multiple input gate primitives are as follows: 

 

 

Single input gate primitives include not, buf, notif1, bufif1, notif0, and bufif0. These have a single input and one or more outputs. Gate 

primitives notif1, bufif1, notif0, and bufif0 have a control signal. The gates propagate if only control signal is asserted, else the output will 

be high impedance state (z). They are instantiated as follows: 

 

// Inverting gate. 

not not_1 (out, in); 

 

// Two output buffer gate. 

buf buf_1 (out0, out1, in); 

 

// Single output Inverting gate with active-high control signal. 

notif1 notif1_1 (out, in, ctrl); 

 

// Double output buffer gate with active-high control signal. 

bufif1 bufif1_1 (out0, out1, in, ctrl); 

 

// Single output Inverting gate with active-low control signal. 

notif0 notif0_1 (out, in, ctrl); 

 

// Single output buffer gate with active-low control signal. 

bufif0 bufif1_0 (out, in, ctrl); 

 

The truth tables are as follows: 

 

 

Array of Instances: 

 



wire [3:0] out, in0, in1;  

and and_array[3:0] (out, in0, in1); 

 

The above statement is equivalent to following bunch of statements: 

 

and and_array0 (out[0], in0[0], in1[0]);  

and and_array1 (out[1], in0[1], in1[1]); 

and and_array2 (out[2], in0[2], in1[2]);  

and and_array3 (out[3], in0[3], in1[3]); 

 

>> Examples 

 

Gate Delays: 

 

In Verilog, a designer can specify the gate delays in a gate primitive instance. This helps the designer to get a real time behavior of the logic 

circuit. 

 

Rise delay: It is equal to the time taken by a gate output transition to 1, from another value 0, x, or z. 

 

Fall delay: It is equal to the time taken by a gate output transition to 0, from another value 1, x, or z. 

 

Turn-off delay: It is equal to the time taken by a gate output transition to high impedance state, from another value 1, x, or z. 

 If the gate output changes to x, the minimum of the three delays is considered. 

 If only one delay is specified, it is used for all delays. 

 If two values are specified, they are considered as rise, and fall delays. 

 If three values are specified, they are considered as rise, fall, and turn-off delays. 

 The default value of all delays is zero. 

and #(5) and_1 (out, in0, in1); 

// All delay values are 5 time units. 

 

nand #(3,4,5) nand_1 (out, in0, in1); 

// rise delay = 3, fall delay = 4, and turn-off delay = 5. 

 

or #(3,4) or_1 (out, in0, in1); 

// rise delay = 3, fall delay = 4, and turn-off delay = min(3,4) = 3. 

 

There is another way of specifying delay times in verilog, Min:Typ:Max values for each delay. This helps designer to have a much better 

real time experience of design simulation, as in real time logic circuits the delays are not constant. The user can choose one of the delay 



values using +maxdelays, +typdelays, and +mindelays at run time. The typical value is the default value. 

 

and #(4:5:6) and_1 (out, in0, in1); 

// For all delay values: Min=4, Typ=5, Max=6. 

 

nand #(3:4:5,4:5:6,5:6:7) nand_1 (out, in0, in1); 

// rise delay: Min=3, Typ=4, Max=5, fall delay: Min=4, Typ=5, Max=6, turn-off delay: Min=5, Typ=6, Max=7. 

 

In the above example, if the designer chooses typical values, then rise delay = 4, fall delay = 5, turn-off delay = 6. 

 

Examples: 

 

1. Gate level modeling of a 4x1 multiplexer. 

 

The gate-level circuit diagram of 4x1 mux is shown below. It is used to write a module for 4x1 mux. 

 

 

module 4x1_mux (out, in0, in1, in2, in3, s0, s1); 

 

// port declarations 

output out; // Output port. 

input in0, in1, in2. in3; // Input ports. 

input s0, s1; // Input ports: select lines. 

 

// intermediate wires 

wire inv0, inv1; // Inverter outputs. 

wire a0, a1, a2, a3; // AND gates outputs. 

 

// Inverters. 

not not_0 (inv0, s0); 

not not_1 (inv1, s1); 

 

// 3-input AND gates. 

and and_0 (a0, in0, inv0, inv1); 

and and_1 (a1, in1, inv0, s1); 

and and_2 (a2, in2, s0, inv1); 

and and_3 (a3, in3, s0, s1); 

 

// 4-input OR gate. 

or or_0 (out, a0, a1, a2, a3); 



 

endmodule 

 

2. Implementation of a full adder using half adders. 

 

Half adder: 

 

 

 

module half_adder (sum, carry, in0, in1); 

 

output sum, carry; 

input in0, in1; 

 

// 2-input XOR gate. 

xor xor_1 (sum, in0, in1); 

 

// 2-input AND gate. 

and and_1 (carry, in0, in1); 

 

endmodule 

 

Full adder: 

 

 

module full_adder (sum, c_out, ino, in1, c_in); 

 

output sum, c_out; 

input in0, in1, c_in; 

 

wire s0, c0, c1; 

 

// Half adder : port connecting by order. 

half_adder ha_0 (s0, c0, in0, in1); 

 

// Half adder : port connecting by name. 

half_adder ha_1 (.sum(sum), 

                .in0(s0), 

                .in1(c_in), 

                .carry(c1)); 

 



// 2-input XOR gate, to get c_out. 

xor xor_1 (c_out, c0, c1); 

 

endmodule 

Introduction 

 

Dataflow modeling is a higher level of abstraction. The designer no need have any knowledge of logic circuit. He should be aware of data 

flow of the design. The gate level modeling becomes very complex for a VLSI circuit. Hence dataflow modeling became a very important 

way of implementing the design. 

In dataflow modeling most of the design is implemented using continuous assignments, which are used to drive a value onto a net. The 

continuous assignments are made using the keyword assign. 

 

The assign statement 

 

The assign statement is used to make continuous assignment in the dataflow modeling. The assign statement usage is given below: 

 

assign out = in0 + in1; // in0 + in1 is evaluated and then assigned to out. 

 

Note: 

 The LHS of assign statement must always be a scalar or vector net or a concatenation. It cannot be a register. 

 Continuous statements are always active statements. 

 Registers or nets or function calls can come in the RHS of the assignment. 

 The RHS expression is evaluated whenever one of its operands changes. Then the result is assigned to the LHS. 

 Delays can be specified. 

Examples: 

 

assign out[3:0] = in0[3:0] & in1[3:0]; 

 

assign {o3, o2, o1, o0} = in0[3:0] | {in1[2:0],in2}; // Use of concatenation. 

 

Implicit Net Declaration: 

 

wire in0, in1; 

assign out = in0 ^ in1; 

 

In the above example out is undeclared, but verilog makes an implicit net declaration for out. 

 



Implicit Continuous Assignment: 

 

wire out = in0 ^ in1; 

 

The above line is the implicit continuous assignment. It is same as, 

 

wire out; 

assign out = in0 ^ in1; 

 

Delays 

 

There are three types of delays associated with dataflow modeling. They are: Normal/regular assignment delay, implicit continuous 

assignment delay and net declaration delay. 

 

Normal/regular assignment delay: 

 

assign #10 out = in0 | in1; 

 

If there is any change in the operands in the RHS, then RHS expression will be evaluated after 10 units of time. Lets say that at time t, if 

there is change in one of the operands in the above example, then the expression is calculated at t+10 units of time. The value of RHS 

operands present at time t+10 is used to evaluate the expression. 

 

Implicit continuous assignment delay: 

 

wire #10 out = in0 ^ in1; 

 

is same as 

 

wire out; 

assign 10 out = in0 ^ in1; 

 

Net declaration delay: 

 

wire #10 out; 

assign out = in; 

 

is same as 

 

wire out; 

assign #10 out = in; 

 



Examples 

 

1. Implementation of a 2x4 decoder. 

 

module decoder_2x4 (out, in0, in1); 

 

output out[0:3]; 

input in0, in1; 

 

// Data flow modeling uses logic operators. 

assign out[0:3] = { ~in0 & ~in1, in0 & ~in1, 

                  ~in0 & in1, in0 & in1 }; 

 

endmodule 

 

2. Implementation of a 4x1 multiplexer. 

 

module mux_4x1 (out, in0, in1, in2, in3, s0, s1); 

 

output out; 

input in0, in1, in2, in3; 

input s0, s1; 

 

assign out = (~s0 & ~s1 & in0)|(s0 & ~s1 & in1)| 

             (~s0 & s1 & in2)|(s0 & s1 & in0); 

 

endmodule 

 

3. Implementation of a 8x1 multiplexer using 4x1 multiplexers. 

module mux_8x1 (out, in, sel); 

 

output out; 

input [7:0] in; 

input [2:0] sel; 

 

wire m1, m2; 

 

// Instances of 4x1 multiplexers. 

mux_4x1 mux_1 (m1, in[0], in[1], in[2], 

               in[3], sel[0], sel[1]); 



mux_4x1 mux_2 (m2, in[4], in[5], in[6], 

               in[7], sel[0], sel[1]); 

 

assign out = (~sel[2] & m1)|(sel[2] & m2); 

 

endmodule 

 

4. Implementation of a Full adder. 

 

module full_adder (sum, c_out, in0, in1, c_in); 

 

output sum, c_out; 

input in0, in1, c_in; 

 

assign { c_out, sum } = in0 + in1 + c_in; 

 

endmodule 

Introduction 

 

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling techniques are relatively detailed. They 

require some knowledge of how hardware, or hardware signals work. The abstraction in this modeling is as simple as writing the logic in C 

language. This is a very powerful abstraction technique. All that designer needs is the algorithm of the design, which is the basic 

information for any design. 

 

Most of the behavioral modeling is done using two important constructs: initial and always. All the other behavioral statements appear only 

inside these two structured procedure constructs. 

 

The initial Construct 

 

The statements which come under the initial construct constitute the initial block. The initial block is executed only once in the simulation, 

at time 0. If there is more than one initial block. Then all the initial blocks are executed concurrently. The initial construct is used as 

follows: 

initial 

begin 

reset = 1'b0; 

clk = 1'b1; 

end 

 

or 



 

initial 

clk = 1'b1; 

 

In the first initial block there are more than one statements hence they are written between begin and end. If there is only one statement then 

there is no need to put begin and end. 

 

The always Construct 

 

The statements which come under the always construct constitute the always block. The always block starts at time 0, and keeps on 

executing all the simulation time. It works like a infinite loop. It is generally used to model a functionality that is continuously repeated. 

always 

#5 clk = ~clk; 

 

initial 

clk = 1'b0; 

 

The above code generates a clock signal clk, with a time period of 10 units. The initial blocks initiates the clk value to 0 at time 0. Then 

after every 5 units of time it toggled, hence we get a time period of 10 units. This is the way in general used to generate a clock signal for 

use in test benches. 

always @(posedge clk, negedge reset) 

begin 

a = b + c; 

    d = 1'b1; 

end 

 

In the above example, the always block will be executed whenever there is a positive edge in the clk signal, or there is negative edge in the 

reset signal. This type of always is generally used in implement a FSM, which has a reset signal. 

always @(b,c,d) 

begin 

    a = ( b + c )*d; 

    e = b | c; 

end 

 

In the above example, whenever there is a change in b, c, or d the always block will be executed. Here the list b, c, and d is called the 

sensitivity list. 

 

In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include all input signals, used in the always 

block. This is very useful when always blocks is used for implementing the combination logic. 



 

Procedural Assignments 

 

Procedural assignments are used for updating reg, integer, time, real, realtime, and memory data types. The variables will retain their values 

until updated by another procedural assignment. There is a significant difference between procedural assignments and continuous 

assignments. 

Continuous assignments drive nets and are evaluated and updated whenever an input operand changes value. Where as procedural 

assignments update the value of variables under the control of the procedural flow constructs that surround them. 

 

The LHS of a procedural assignment could be: 

 reg, integer, real, realtime, or time data type. 

 Bit-select of a reg, integer, or time data type, rest of the bits are untouched. 

 Part-select of a reg, integer, or time data type, rest of the bits are untouched. 

 Memory word. 

 Concatenation of any of the previous four forms can be specified. 

When the RHS evaluates to fewer bits than the LHS, then if the right-hand side is signed, it will be sign-extended to the size of the left-hand 

side. 

 

There are two types of procedural assignments: blocking and non-blocking assignments. 

 

Blocking assignments: A blocking assignment statements are executed in the order they are specified in a sequential block. The execution 

of next statement begin only after the completion of the present blocking assignments. A blocking assignment will not block the execution 

of the next statement in a parallel block. The blocking assignments are made using the operator =. 

 

initial 

begin 

    a = 1; 

    b = #5 2; 

    c = #2 3; 

end 

 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is assigned value 3 at time 7. 

 

Non-blocking assignments: The nonblocking assignment allows assignment scheduling without blocking the procedural flow. The 

nonblocking assignment statement can be used whenever several variable assignments within the same time step can be made without 

regard to order or dependence upon each other. Non-blocking assignments are made using the operator <=. 

Note: <= is same for less than or equal to operator, so whenever it appears in a expression it is considered to be comparison operator and not 

as non-blocking assignment. 



 

initial 

begin 

    a <= 1; 

    b <= #5 2; 

    c <= #2 3; 

end 

 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c is assigned value 3 at time 2 (because all the 

statements execution starts at time 0, as they are non-blocking assignments. 

 

Block Statements 

 

Block statements are used to group two or more statements together, so that they act as one statement. There are two types of blocks: 

 Sequential block. 

 Parallel block. 

Sequential block: The sequential block is defined using the keywords begin and end. The procedural statements in sequential block will be 

executed sequentially in the given order. In sequential block delay values for each statement shall be treated relative to the simulation time 

of the execution of the previous statement. The control will pass out of the block after the execution of last statement. 

 

Parallel block: The parallel block is defined using the keywords fork and join. The procedural statements in parallel block will be executed 

concurrently. In parallel block delay values for each statement are considered to be relative to the simulation time of entering the block. The 

delay control can be used to provide time-ordering for procedural assignments. The control shall pass out of the block after the execution of 

the last time-ordered statement. 

 

Note that blocks can be nested. The sequential and parallel blocks can be mixed. 

 

Block names: All the blocks can be named, by adding : block_name after the keyword begin or fork. The advantages of naming a block are: 

 It allows to declare local variables, which can be accessed by using hierarchical name referencing. 

 They can be disabled using the disable statement (disable block_name;). 

 

Conditional (if-else) Statement 

 

The condition (if-else) statement is used to make a decision whether a statement is executed or not. The keywords if and else are used to 

make conditional statement. The conditional statement can appear in the following forms. 

if ( condition_1 ) 

    statement_1; 

 



if ( condition_2 ) 

    statement_2; 

else 

    statement_3; 

 

if ( condition_3 ) 

    statement_4; 

else if ( condition_4 ) 

    statement_5; 

else 

    statement_6; 

 

if ( condition_5 ) 

begin 

    statement_7; 

    statement_8; 

end 

else 

begin 

    statement_9; 

    statement_10; 

end 

 

Conditional (if-else) statement usage is similar to that if-else statement of C programming language, except that parenthesis are replaced by 

begin and end. 

 

Case Statement 

 

The case statement is a multi-way decision statement that tests whether an expression matches one of the expressions and branches 

accordingly. Keywords case and endcase are used to make a case statement. The case statement syntax is as follows. 

case (expression) 

    case_item_1: statement_1; 

    case_item_2: statement_2; 

    case_item_3: statement_3; 

    ... 

    ... 

    default: default_statement; 

endcase 

 

If there are multiple statements under a single match, then they are grouped using begin, and end keywords. The default item is optional. 



 

Case statement with don't cares: casez and casex 

 

casez treats high-impedance values (z) as don't cares. casex treats both high-impedance (z) and unknown (x) values as don't cares. Don't-

care values (z values for casez, z and x values for casex) in any bit of either the case expression or the case items shall be treated as don't-

care conditions during the comparison, and that bit position shall not be considered. The don't cares are represented using the ? mark. 

 

Loop Statements 

 

There are four types of looping statements in Verilog: 

 forever 

 repeat 

 while 

 for 

 

Forever Loop 

 

Forever loop is defined using the keyword forever, which Continuously executes a statement. It terminates when the system task $finish is 

called. A forever loop can also be ended by using the disable statement. 

initial 

begin 

    clk = 1'b0; 

    forever #5 clk = ~clk; 

end 

 

In the above example, a clock signal with time period 10 units of time is obtained. 

 

Repeat Loop 

 

Repeat loop is defined using the keyword repeat. The repeat loop block continuously executes the block for a given number of times. The 

number of times the loop executes can be mention using a constant or an expression. The expression is calculated only once, before the start 

of loop and not during the execution of the loop. If the expression value turns out to be z or x, then it is treated as zero, and hence loop 

block is not executed at all. 

initial 

begin 

    a = 10; 

    b = 5; 



    b <= #10 10; 

    i = 0; 

    repeat(a*b) 

    begin 

        $display("repeat in progress"); 

        #1 i = i + 1; 

    end 

end 

 

In the above example the loop block is executed only 50 times, and not 100 times. It calculates (a*b) at the beginning, and uses that value 

only. 

 

While Loop 

 

The while loop is defined using the keyword while. The while loop contains an expression. The loop continues until the expression is true. 

It terminates when the expression is false. If the calculated value of expression is z or x, it is treated as a false. The value of expression is 

calculated each time before starting the loop. All the statements (if more than one) are mentioned in blocks which begins and ends with 

keyword begin and end keywords. 

initial 

begin 

    a = 20; 

    i = 0; 

    while (i < a) 

    begin 

    $display("%d",i); 

    i = i + 1; 

    a = a - 1; 

    end 

end 

 

In the above example the loop executes for 10 times. ( observe that a is decrementing by one and i is incrementing by one, so loop 

terminated when both i and a become 10). 

 

For Loop 

 

The For loop is defined using the keyword for. The execution of for loop block is controlled by a three step process, as follows: 

1. Executes an assignment, normally used to initialize a variable that controls the number of times the for block is executed. 

2. Evaluates an expression, if the result is false or z or x, the for-loop shall terminate, and if it is true, the for-loop shall execute its 

block. 



3. Executes an assignment normally used to modify the value of the loop-control variable and then repeats with second step. 

Note that the first step is executed only once. 

initial 

begin 

    a = 20; 

    for (i = 0; i < a; i = i + 1, a = a - 1) 

    $display("%d",i); 

end 

 

The above example produces the same result as the example used to illustrate the functionality of the while loop. 

 

Examples 

 

1. Implementation of a 4x1 multiplexer. 

 

module 4x1_mux (out, in0, in1, in2, in3, s0, s1); 

 

output out; 

 

// out is declared as reg, as default is wire 

 

reg out; 

 

// out is declared as reg, because we will 

// do a procedural assignment to it. 

 

input in0, in1, in2, in3, s0, s1; 

 

// always @(*) is equivalent to 

// always @( in0, in1, in2, in3, s0, s1 ) 

 

always @(*) 

begin 

  case ({s1,s0}) 

      2'b00: out = in0; 

      2'b01: out = in1; 

      2'b10: out = in2; 

      2'b11: out = in3; 

      default: out = 1'bx; 

  endcase 



end 

 

endmodule 

 

2. Implementation of a full adder. 

 

module full_adder (sum, c_out, in0, in1, c_in); 

 

output sum, c_out; 

reg sum, c_out 

 

input in0, in1, c_in; 

 

always @(*) 

  {c_out, sum} = in0 + in1 + c_in; 

 

endmodule 

 

3. Implementation of a 8-bit binary counter. 

 

module ( count, reset, clk ); 

 

output [7:0] count; 

reg [7:0] count; 

 

input reset, clk; 

 

// consider reset as active low signal 

 

always @( posedge clk, negedge reset) 

begin 

  if(reset == 1'b0) 

      count <= 8'h00; 

  else 

      count <= count + 8'h01; 

end 

 

endmodule 

 

Implementation of a 8-bit counter is a very good example, which explains the advantage of behavioral modeling. Just imagine how difficult 



it will be implementing a 8-bit counter using gate-level modeling. 

In the above example the incrementation occurs on every positive edge of the clock. When count becomes 8'hFF, the next increment will 

make it 8'h00, hence there is no need of any modulus operator. Reset signal is active low. 

Introduction 

 

Tasks and functions are introduced in the verilog, to provide the ability to execute common procedures from different places in a 

description. This helps the designer to break up large behavioral designs into smaller pieces. The designer has to abstract the similar pieces 

in the description and replace them either functions or tasks. This also improves the readability of the code, and hence easier to debug. 

Tasks and functions must be defined in a module and are local to the module. Tasks are used when: 

 There are delay, timing, or event control constructs in the code. 

 There is no input. 

 There is zero output or more than one output argument. 

Functions are used when: 

 The code executes in zero simulation time. 

 The code provides only one output(return value) and has at least one input. 

 There are no delay, timing, or event control constructs. 

 

Differences 

Functions  Tasks 

Can enable another function but not another task. Can enable other tasks and functions. 

Executes in 0 simulation time. May execute in non-zero simulation time. 

Must not contain any delay, event, or timing control statements. May contain delay, event, or timing control statements. 

Must have at least one input argument. They can have more 

than one input. 
May have zero or more arguments of type input, output, or inout. 

Functions always return a single value. They cannot have 

output or inout arguments. 

Tasks do not return with a value, but can pass multiple values through 

output and inout arguments. 

 

Tasks 

 

There are two ways of defining a task. The first way shall begin with the keyword task, followed by the optional keyword automatic, 

followed by a name for the task, and ending with the keyword endtask. The keyword automatic declares an automatic task that is reentrant 

with all the task declarations allocated dynamically for each concurrent task entry. Task item declarations can specify the following: 

 Input arguments. 



 Output arguments. 

 Inout arguments. 

 All data types that can be declared in a procedural block 

The second way shall begin with the keyword task, followed by a name for the task and a parenthesis which encloses task port list. The port 

list shall consist of zero or more comma separated ports. The task body shall follow and then the keyword endtask. 

 

In both ways, the port declarations are same. Tasks without the optional keyword automatic are static tasks, with all declared items being 

statically allocated. These items shall be shared across all uses of the task executing concurrently. Task with the optional keyword 

automatic are automatic tasks. All items declared inside automatic tasks are allocated dynamically for each invocation. Automatic task 

items can not be accessed by hierarchical references. Automatic tasks 

can be invoked through use of their hierarchical name. 

 

Functions 

 

Functions are mainly used to return a value, which shall be used in an expression. The functions are declared using the keyword function, 

and definition ends with the keyword endfunction. 

 

If a function is called concurrently from two locations, the results are non-deterministic because both calls operate on the same variable 

space. The keyword automatic declares a recursive function with all the function declarations allocated dynamically for each recursive call. 

Automatic function items can not be accessed by hierarchical references. Automatic functions can be invoked through the use of their 

hierarchical name. 

 

When a function is declared, a register with function name is declared implicitly inside Verilog HDL. The output of a function is passed 

back by setting the value of that register appropriately. 

 

Examples 

 

1. Simple task example, where task is used to get the address tag and offset of a given address. 

 

module example1_task; 

 

input addr; 

wire [31:0] addr; 

 

wire [23:0] addr_tag; 

wire [7:0] offset; 

 

task get_tag_and_offset ( addr, tag, offset); 

 

input addr; 



output tag, offset; 

 

begin 

 tag = addr[31:8]; 

 offset = addr[7:0]; 

end 

endtask 

 

always @(addr) 

begin 

 get_tag_and_offset (addr, addr_tag, addr_offset); 

end 

 

// other internals of module 

 

endmodule 

 

2. Task example, which uses the global variables of a module. Here task is used to do temperature conversion. 

 

module example2_global; 

 

real t1; 

real t2; 

 

// task uses the global variables of the module 

 

task t_convert; 

begin 

 t2 = (9/5)*(t1+32); 

end 

endtask 

 

always @(t1) 

begin 

 t_convert(); 

end 

 

endmodule 


